Evaluation of Random Field Models in Multi-modal Unsupervised Tampering Localization

Paweł Korus & Jiwu Huang

Shenzhen University
College of Information Engineering

IEEE International Workshop on Information Forensics and Security,
4 - 7 Dec 2016, Abu Dhabi
Motivation and Goals (I)

- Reliable forensics should analyze various traces.
- Decision fusion studied in detail for tampering detection\(^1\).
 - Fuzzy logic, Dempster-Shafer theory of evidence.
- In tampering localization - still an open problem\(^2\).
 - Naive pixel-wise application of (even complicated) combination rules.
 - The simplest rules (summation / product) actually yield good performance.
- This naive approach is clearly sub-optimal - example problem:
 - Scale discrepancy: e.g., CFA (8 \times 8) and PRNU (128 \times 128).

\(^1\)Fontani et al., TIFS 2013; Barni et al., ICASSP 2012
\(^2\)Ferrara et al., ICMEW 2015; Cozzolino et al. IAP 2013
Motivation and Goals (II)

- Solution: cross-reference results with actual objects.
- Exploiting image content in forensics (before):
 - Manual image segmentation\(^3\).
 - Guided image filtering\(^4\) (feature correlation / structure transfer).
- Problems:
 - How to do reliable image segmentation? How to do it automatically?
 - How to handle object removal?
- Goals of our study:
 - Consider a scenario with mismatched detectors (scale discrepancy).
 - Evaluate random field models with content-dependent potentials.
 - Verify operation for subtle object removal forgeries.
 - Compare standard grid-based and dense CRF models.

\(^3\) Barni et al., ISCS 2010; Chierchia et al., ICDSP 2011
\(^4\) Chierchia et al., ICASSP 2014
Individual Detectors

- State-of-the-art CFA detector (small blocks, fine shape)5:
 - Exploits periodicity of resampling artifacts.
 - Compares prediction error of acquired vs. interpolated pixels.
 - GMM-based segmentation into tampered / pristine blocks.
 - Operates on small non-overlapping blocks (best performance for 8×8 px).

- Photo-response non-uniformity detector (large windows, coarse shape)6:
 - Validates (locally) presence of a known noise signature.
 - Uses a correlation predictor to locally estimate the strength of the signature.
 - Requires relatively large sample (we used overlapping 64×64 px windows).
 - Tampering probability from Bayesian analysis.

- Both detectors set up to yield same-size tampering probability maps:
 - localization resolution of 8×8 px image blocks.

6Chen et al., TIFS 2008; https://github.com/pkorus/multiscale-prnu
Standard Combination Rules (I)

- Naive pixel-wise combination rules (τ - threshold):
 - Sum fusion:
 \[
 t_i = \left(c_i^{(cfa)} + c_i^{(prnu)} \right) / 2 > \tau
 \]
 - Product fusion:
 \[
 t_i = \left(c_i^{(cfa)} c_i^{(prnu)} \right) \left(c_i^{(cfa)} c_i^{(prnu)} + \tilde{c}_i^{(cfa)} \tilde{c}_i^{(prnu)} \right)^{-1} > \tau
 \]
 - Disjunction fusion (two variants of heuristic cleaning):
 \[
 t_i = \left(c_i^{(cfa)} > \tau \right) \lor \left(c_i^{(prnu)} > \tau \right)
 \]
 - Empirical fusion: rule learned from data.

- Heuristic cleaning:
 - For fusion result: morphological opening (disk-shaped SE 15×15).
 - For individual detectors:
 - CFA - as above;
 - PRNU - disk-shaped SE 31×31 opening + 19×19 dilation
Standard Combination Rules (II)

- **(0,0)** sum fusion
- **(0,0)** product fusion
- **(0,0)** empirical fusion
Random Field Models

- Optimization of the following energy function:

\[
E(t) = \frac{1}{|D|} \sum_{d \in D} \sum_{i=1}^{N} \psi_{\tau}(c_i^{(d)} | t_i) + \sum_{i=1}^{N} \sum_{j \in \Xi_i} \phi_p(t_i, t_j)
\]

where:
- \(\psi_{\tau}\) is the unary potential (favors solutions close to observations);
- \(\phi_p\) is a pairwise interaction potential (favors the same decisions among neighbors).

- The pairwise potential has two components:
 - \(\beta_0\) - default interaction strength,
 - \(\beta_1\) - content-dependent interaction strength (based on color similarity).

- We consider two versions:
 - grid CRF - only nearest 8-connected neighborhood,
 - dense CRF - fully connected pairwise field (Gaussian).

- Solvers: graph cuts\(^7\) / iterative mean-field approximations\(^8\).

\(^7\)UGM Toolbox, http://www.cs.ubc.ca/~schmidtm/Software/UGM.html

\(^8\)Krähenbühl et al., NIPS 2011
Evaluation Scenario

- Evaluation of localization performance on realistic forgeries:
 - Challenging realistic data set crafted by hand in modern photo editors.
 - 120 images (3 cameras, 1920 × 1080 px uncompressed TIFFs).
 - An extended version is publicly available for research purposes\(^9\).

- Performance metrics: \(F_1\) score, ROC

\[^9\text{http://kt.agh.edu.pl/~korus/downloads/dataset-realistic-tampering/}\]
Evaluation Results

- False positive rate
- True positive rate
- Decision threshold τ
- Average F_1 score
- Peak F_1 score (grid CRF fusion)
- Peak F_1 score (product fusion)
- Peak F_1 score (empirical pixel-wise fusion)

<table>
<thead>
<tr>
<th>style</th>
<th>detector</th>
<th>max F_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum</td>
<td></td>
<td>0.57</td>
</tr>
<tr>
<td>product</td>
<td></td>
<td>0.61</td>
</tr>
<tr>
<td>disjunction (CC)</td>
<td></td>
<td>0.57</td>
</tr>
<tr>
<td>disjunction (IC)</td>
<td></td>
<td>0.60</td>
</tr>
<tr>
<td>empirical</td>
<td></td>
<td>0.61</td>
</tr>
<tr>
<td>grid CRF</td>
<td></td>
<td>0.69</td>
</tr>
<tr>
<td>dense CRF</td>
<td></td>
<td>0.68</td>
</tr>
<tr>
<td>CFA</td>
<td></td>
<td>0.44</td>
</tr>
<tr>
<td>PRNU</td>
<td></td>
<td>0.49</td>
</tr>
</tbody>
</table>
Example Localization Results (best F-score wise)

tampered image

CFA

PRNU

sum fusion

product fusion

empirical fusion

grid CRF

dense CRF

binary disjunction
Example Localization Results (best F-score wise)

tampered image

CFA

PRNU

sum fusion

product fusion

empirical fusion

grid CRF

dense CRF

binary disjunction
Example Localization Results (best F-score wise)

tampered image

CFA

PRNU

sum fusion

product fusion

empirical fusion

grid CRF

dense CRF

binary disjunction
Example Localization Results (best F-score wise)

tampered image CFA PRNU

sum fusion product fusion empirical fusion

grid CRF dense CRF binary disjunction
Example Localization Results (best F-score wise)

tampered image

CFA

PRNU

sum fusion

product fusion

empirical fusion

grid CRF

dense CRF

binary disjunction
Example Localization Results (best F-score wise)

tampered image

CFA

PRNU

sum fusion

product fusion

empirical fusion

grid CRF

dense CRF

binary disjunction
Example Localization Results (best F-score wise)

tampered image

CFA

PRNU

sum fusion

product fusion

empirical fusion

grid CRF

dense CRF

binary disjunction
Example Localization Results (best F-score wise)

tampered image

CFA

PRNU

sum fusion

product fusion

empirical fusion

grid CRF

dense CRF

binary disjunction
Object Insertion vs Object Removal

- Problems with existing evaluation metrics.
 - Oblivion to spatial relationships + collateral damage.
 - Better detection often leads to marginal improvement (bottom) or even deterioration (top) of measurable performance.

- Impact of content guidance on the MRF fusion (see below).

CRF guided by tampered image
\((F_1 = 0.664 / A = 0.749) \)

CRF guided by original image
\((F_1 = 0.806 / A = 0.838) \)

CRF with no content guidance
\((F_1 = 0.812 / A = 0.842) \)

Pixel-wise product fusion
\((F_1 = 0.844 / A = 0.866) \)

CRF guided by tampered image
\((F_1 = 0.820 / A = 0.851) \)

CRF guided by original image
\((F_1 = 0.804 / A = 0.844) \)

CRF with no content guidance
\((F_1 = 0.805 / A = 0.840) \)

Pixel-wise product fusion
\((F_1 = 0.799 / A = 0.841) \)
Conclusions & Future Work (I)

- Even naive fusion leads to significant improvement over individual detectors.
- Disjunction fusion has an advantage of customized post-processing.
- Product fusion is not an accurate combination model but it seems to be of limited importance in practice.
- **Scale discrepancy in multi-modal analysis** makes pixel-wise fusion sub-optimal.
- Fusion in localization:
 - not only combination rules matter.
 - need to cross-reference results with image content.
Adoption of neighborhood dependencies further improves performance.

Content-dependent interactions are an effective tool to exploit image content - no problems with object removal.

No significant quantitative differences between CRF models, but...

▶ ...existing evaluation protocols and metrics are imperfect,
▶ ...important qualitative differences are obvious.

Future work:

▶ Understanding of actual map utility for forensic analysis (humans in general?).
▶ Better evaluation metrics aware of spatial dependencies and collateral damage.
Limitations and Possible Extensions of the Framework

- Need to test more diverse detectors.
 - Some may work on even larger blocks (e.g., 256×256 px).
 - Some may not yield tampering probabilities.
 - Some may not work on square blocks at all (segments / super-pixels).

- The current framework does not support compatibility of traces.
 - Should be feasible with proper definition of unary potentials.

- Limited improvement for overconfident detectors.
 - Common for popular Bayesian formulations.
 - Valid traces present in tampered area.
 - To some extent, alleviated by truncated unary potentials.

- Training limitations:
 - Imperfect performance measures.
 - Parameter generalization in diverse conditions, e.g., for varying image size?
 - Is it possible to choose the parameters for each case individually?
Thank You

- Thank you for your attention.
- Discussion?

- Contact: pkorus@agh.edu.pl
- Web: http://kt.agh.edu.pl/~korus/
- Supplement:
 - more details + additional experiments,
- Dataset:
 - 220 images + 3-level GT
- Matlab code:
 - https://github.com/pkorus/multiscale-prnu