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Abstract—Analysis of imaging sensors is one of the most reli-
able photo forensic techniques, but it is increasingly challenged
by complex image processing in modern cameras. The underlying
photo response non-uniformity (PRNU) is distilled into a static
sensor fingerprint unique for each device. This makes it easy to
estimate and spoof and limits its reliability in face of sophisticated
attackers. We propose to exploit computational capabilities of
emerging intelligent vision sensors to design next-generation
computational sensor fingerprints. Such sensors allow for running
neural network inference directly on raw pixels, which enables
end-to-end optimization of the entire photo acquisition and
distribution pipeline. Control over fingerprint generation allows
for adaptation to various requirements and threat models. In this
study we provide a detailed assessment of security properties
and evaluate two approaches to prevent spoofing: fingerprint
generation based on local image content and adversarial training.
We found that adversarial training is currently impractical, but
content fingerprints deliver good performance in the considered
cross-domain (RAW-RGB) setting and could provide robust best-
effort protection against photo manipulation. Moreover, com-
putational fingerprints can alleviate other limitations of PRNU,
e.g., its limited reliability for dark/texture content and expensive
fingerprint storage that hinders scalability. To enable this line of
work, we developed a novel open-source and high-fidelity simula-
tion environment for modeling photo acquisition and distribution
pipelines (https://github.com/pkorus/neural-imaging).

I. INTRODUCTION

Sensor fingerprints proved to be one of the most reliable
and versatile image forensic traces with applications in source
attribution, manipulation detection [[1H3] and several other
downstream problems (e.g., clustering [4], photo carving [5],
user authentication [6]]). Its analysis exploits intrinsic photo-
response non-uniformity (PRNU) of imaging sensors and
involves estimation of a unique fingerprint for each camera.
Subsequent statistical analysis verifies consistency of image
residuals against the expected fingerprint, either globally (for
attribution) or locally (for manipulation detection).

Despite their impressive track record, PRNU fingerprints
have several limitations. Analysis requires pixel-perfect syn-
chronization between the analyzed image and the fingerprint
which makes the process brittle and may require brute-force
search for synchronization. While efficient algorithms exist for
simple transformations (e.g., cropping) many post-processing
steps need complex heuristics (e.g., motion-stabilized video [7]]
or high dynamic range imaging [8]]) or have no solutions at all.
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Increasing adoption of computational photography and learned
image processing operators will be another challenge. Prob-
lems with fingerprint uniqueness have already been reported
for modern smart-phones [9]] and neural image signal proces-
sors (ISPs), even trained to faithfully reproduce the standard
camera pipeline, can yield incompatible fingerprints [[10} [11]];
more complex pipelines (e.g., for low-light imaging [|12]) can
invalidate the approach entirely [[11]. As ISPs evolve, intrinsic
sensor fingerprinting will likely become obsolete.

We believe computational photography brings not only
challenges but also opportunities. We show that it is possi-
ble to learn novel sensor fingerprints using neural networks
(NNs). Such computational sensor fingerprints (CSF) could
be deployed on emerging intelligent sensors with integrated
NN inference capabilities [13H16]). Modern machine learning
frameworks bring powerful automatic differentiation capabili-
ties, which can be leveraged to optimize complex models that
would otherwise be untractable. We can learn to embed in
the raw domain and detect in the RGB domain, even with a
complex channel in between (camera ISP, lossy compression,
or even recapture [17, |18]]). This enables media protection at
the very beginning of their digital life cycle.

A next-generation sensor fingerprinting system could also
address other limitations of PRNU, such as low reliability
in dark/textured images, and poor security & privacy prop-
erties. Static nature the artifact makes it easy to estimate and
spoof. Unsuspecting users can be deanonymized by linking
photographs to public social media profiles [[19], which may be
undesirable, e.g., when documenting civil rights abuses. These
reasons alone make a compelling case for integrating a secure
capture (SC) mode with control over various authentication
signals with different security & privacy trade-offs. An exhaus-
tive discussion of secure capture requirements can be found in
a recent report from Witness, an organization that helps defend
human rights using photo & video technology [20].

SC is currently provided by several smart-phone apps [21-
23]]) and is gaining traction in emerging standardization efforts,
e.g., via CAI and C2PA initiatives [24, 25]]. These solutions
are based on meta-data extensions with cryptographic digital
signatures, and predominantly use software implementations,
which may be susceptible to OS-level spoofing e.g., via device
virtualization. One of the main limitations is their need for
compatible tools at every editing and recompression step
and susceptibility to meta-data removal (e.g., via stripping or
recapture). Integration with the camera is still an open problem
with ongoing R&D efforts[ﬂ Deploying protection at the sensor

Truepic has recently announced a prototype implementation based on the
trusted execution environment (TEE) in Qualcomm’s Snapdragon chips. The
details of their system are not public, but the system aims to move signature
computation to a trusted environment and to integrate with the emerging meta-
data standards [24].
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level could be attractive since it is the very first step in photo
acquisition. Subsequent tampering with user-level firmware
allows for seamless synthesis of counterfeit photos with correct
forensic traces and meta-data [26]. A next-generation sensor
fingerprinting system could complement the emerging media
security ecosystem and authentication infrastructure.

In this work, we consider a generalization of sensor finger-
prints that naturally lends itself to implementation using neural
networks and could be deployed on the emerging intelligent
vision sensors and optimized end-to-end for complex distribu-
tion channels. Our system generates fingerprints dynamically
based on a secret key and an additional authentication context
(e.g., timestamp, location, or local image content) which gives
it flexibility to adapt to various applications and threat models.
Introducing content dependency increases resistance to spoof-
ing and raises the bar for crafting undetectable photo manip-
ulations. In addition to improved security, our learned sensor
fingerprinting system delivers better detection performance at
a lower image distortion level compared with standard PRNU.
This shows that degradation of image quality is limited and
should not deter vendors from deployment.

We believe that our work could be the first step towards
a next-generation sensor fingerprinting system that takes full
advantage of the emerging in-camera computational capabili-
ties. We build upon a solid foundation of PRNU fingerprints
and aim to improve them with end-to-end optimization. We
summarize the main contributions of our work as follows:

1) We propose computational sensor fingerprints, a novel
concept that takes advantage of emerging vision sensors
with integrated computational capabilities.

2) We perform a detailed comparison with intrinsic sensor
fingerprints (and spread spectrum watermarks) in a sim-
ulated environment and show novel results on synthetic
PRNU simulation.

3) We provide a systematic study of security properties and
evaluate two strategies to prevent spoofing: training-time
attack modeling and content fingerprints; we demonstrate
that content fingerprints can deliver good detection per-
formance in cross domain matching (RAW-RGB) and
significantly raise the bar for a successful attack.

4) We extended our neural imaging toolbox with sensor
fingerprint modeling and optimization features.

To enable this line of work, we built a high-fidelity simu-
lation environment for modeling and end-to-end optimization
of complex photo acquisition and distribution pipelines. Our
neural imaging toolbox provides building blocks for various
applications including optimization of camera ISP [27], image
codecs [28]], forensics [29], or steganography. The toolbox is
open source and can be obtained at jhttps://github.com/pkorus/
neural-imaging.

II. RELATED WORK

We review related work in: (a-c) photo manipulation detec-
tion (passive & active); (d) computational imaging & neural
sensors; (e) end-to-end optimization of photo acquisition &
distribution; and (f) signal authentication in other domains.

a) Passive Detection with Image Forensics: Image foren-
sics analyses subtle traces left by various steps during photo
acquisition, distribution, post-processing or manipulation [[30}
31]. Validation of physical integrity (consistency of lighting,
shadows, perspective, etc.) is manual or semi-automatic as it
relies on high-level understanding of image content and laws
of physics. Verification of digital integrity (consistency of low-
level signal features) is automatic and uses formal statistical
modeling or machine learning. Some of the most successful
tools include analysis of: 1) sensor fingerprints [IH3]]; 2)
lossy compression (e.g., local inconsistency in JPEG compres-
sion [32H34]); and 3) image residuals or their statistical fea-
tures [29, 35, |36]. Initially, forensic detectors relied on formal
mathematical modeling (e.g., hypothesis testing) and machine
learning on hand-crafted features (e.g., co-occurrence). Recent
work focuses on deep learning (DL) to obtain low-level
features automatically [29} 36+39].

Despite two decades of active research, adoption of image
forensics remains limited; to the best of our knowledge, only
PRNU fingerprints satisfy the Daubert standard for evidence
admissibility in US courts [40]. One of the main limitations
is the fragility of forensic traces to common post-processing
and lossy compression in distribution channels [38]]. Many
methods are reliable mainly for native camera output and the
situation may soon change for worse due to increasing adop-
tion of complex computational methods directly inside of the
cameras, e.g., night-mode or high dynamic range imaging [J]].
Secondly, forensic traces are susceptible to spoofing (known
as counter forensics) 26} 141} 42]]. While some of these attacks
leave traces of their own (and can be detected), reliability of
forensic analysis in the real-world remains unclear.

b) Active Protection and Digital Watermarking: Active
protection is a compelling alternative to passive techniques,
but requires a SC workflow where an explicit protection step
attaches side information to captured assets to describe their
authenticity and provenance. Digital watermarking can serve
as a communication layer and embed this information directly
in image pixels [43]] which addresses the loss of meta-data.
NNs can learn effective embedding strategies [44], including
optimization for analytically intractable channels, e.g., display-
to-camera or printer-to-camera communication [[17, |18]].

Authentication systems based on digital watermarks have
been extensively studied [30, 45] and can provide advanced
integrity verification features, including precise manipulation
localization or even restoration of original content [46-48].
The embedded side-information can be sensitive to any (fragile
watermarking) or selected manipulations (semi-fragile water-
marking) and the watermarks can be designed to survive
various post-processing. This approach has been an active
research field in the first decade of the century, but despite im-
pressive results the interest eventually subsided. Lack of viable
business models created little incentives for camera vendors
to adopt the technology, especially since it involves additional
image distortion and is non-trivial to deploy securely. One
of the main barriers involved management and storage of
keys, which turned out to be the weakest point of commercial
signature-based systems from Kodak and Nikon [30]. Secure
enclaves were not available and encryption keys could simply
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be extracted from memory chips.

We currently see increasing interest in building a robust SC
infrastructure. Cameras are displaced by smart-phones with
constant connectivity, computation accelerators and trusted
storage (used e.g., for biometric templates). Emerging prove-
nance standards will likely establish a key management infras-
tructure that could be reused by various protection methods.

c) Signatures, Hashing & Block-chains: A secure camera
based on digital signatures has been discussed two decades
ago [49]. In the most recent incarnations, the signatures can be
stored in a block-chain, as explored in academic research [50],
commercial products [21},22]], and standardization efforts [S1]].
Digital signatures lack support for post-processing (e.g., com-
pression) and can be easily stripped from media containers.
One way of addressing these problems involves provenance
tracking and requires regeneration of the signatures at every
step. This assumes a complete ecosystem with compatible
devices, photo editors and distribution platforms (route taken
by C2PA). Alternatively, one may use robust hashing, which
remains invariant to post-processing and may capture spatial
information to enable manipulation localization [52]. To ad-
dress meta-data removal, one may store its copy online and
use a watermark to embed a lookup ID [24]} 50, |51].

d) Computational Photography and NN Accelerators:
Current research on camera ISPs heavily relies on DL. While
NNs for individual operations (e.g., demosaicing) have been
known for a long time [53]], recent work improves quality [54],
combines several steps (e.g., demosaicing and denoising [55]),
or even replaces the entire pipeline [12} |56 [57]]. Modern NNs
are highly effective in extreme imaging conditions, e.g., low-
light [12], single shot HDR [58]] or super-resolution [59]]. Prac-
tical implementation is facilitated by increasing availability of
NN accelerators [[60] which are currently emerging in imaging
sensors [14-16]. Neural sensors enable simultaneous acquisi-
tion and inference directly on raw pixel measurements. This
enables novel capabilities, like per-pixel shutter control [61]]
or the proposed computational sensor fingerprints. In addition
to research prototypes, first commercial sensors of this kind
are making their way to the market (Sony IMX500 [13])).

e) End-to-end Acquisition and Distribution Optimization:
Our recent work explored joint optimization of various com-
ponents in the image acquisition and distribution pipeline to
address some of the key issues in multimedia security. First,
we demonstrated that it is possible to learn synthetic forensic
traces that facilitate manipulation identification and survive
highly lossy channels (25% down-sampling and strong JPEG
compression) [[11, 27]]. We achieved this by fine-tuning a neu-
ral ISP model together with a forensic analysis network [29].
Secondly, we showed that lossy compression can also be
trained to retain forensic traces with better fidelity [28]. We
learned a neural image codec and demonstrated that it can
be fine-tuned to improve manipulation identification accuracy
even at very low bit-rates, well below the practicality of JPEG
(QF =~20). The current study extends this line of work and
aims to optimize sensor-level traces.

f) Signal Authentication in Other Domains: DL can be
used for signal authentication in the Internet-of-Things [62].
A long short-term memory (LSTM) network can extract
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stochastic signal features used for constructing a spread spec-
trum watermark. To improve security, the watermark changes
dynamically to prevent eavesdropping and estimation attacks.
A recent line of work started exploring artificial fingerprints
that could be introduced to training data and later detected in
images sampled from modern generative ML models [|63].

III. NOTATION & PROBLEM STATEMENT

Throughout the paper we use lowercase symbols for scalars,
lowercase bold symbols for vectors/tensors, and calligraphic
symbols for functions. To simplify notation, we assume the
index of a chosen tensor element is implicit, e.g., x represents
a single element of x, and x|1) represents a neighborhood
of size (2s 4+ 1) x (2s + 1) around that element. We use the
following letter convention for classes of symbols: x denotes
RAW images, y color RGB images, and k the fingerprints.
We represent RAW images as rggb stacks with different Bayer-
filtered components stacked along the channel dimension. Sub-
scripts correspond to additional characteristics of the objects,
e.g., yo corresponds to an image with embedded fingerprint
ko. We summarize the notation in Tab.

We consider classic and computational sensor fingerprints in
a common framework (Fig. [T). A sensor fingerprinting system
includes an encoder (implicit for PRNU and explicit for CSF)
and a detector which assesses the likelihood of two outcomes
(correct fingerprint present or absent). A deployed detector has
access to a secret key k¢ and a signed authentication context,
e.g., via meta-data or a second small-payload watermark.

A fingerprint kg is embedded in the RAW image x and
detected in a color image y. The fingerprint is static and latent
for PRNU, and dynamic and observed for CSF - it is generated
based on a secret key k¢ and an authentication context (e.g.,
timestamp, location, image content) which ensures it changes
dynamically. Fingerprints generated based on image content
are denoted as k¢, /.y for RAW and RGB inputs, respectively.
The bracketed subscript notation denotes multiple options (i.e.,
kiz/yy — kg and/or k). It should not be confused with the
double subscript notation (e.g., ki /d denotes an adversarial
estimate of the fingerprint obtained by targeting the detector).
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Fig. 1. Schematic illustration of a sensor fingerprinting system: a fingerprint ko (generated based on a secret key and authentication context) is embedded
in the RAW image x and passed through the camera ISP to produce a color image yq; after transmission via a lossy channel, the fingerprint can be detected
directly from a (distorted) RGB image y0; the detection is provided by an authentication service that looks up the key and regenerates the expected fingerprint.

In this case, wildcards (x) are used to denote multiple options
(e.g., kj / denotes any estimated fingerprint).

A. Photo Response Non-Uniformity and Embedding Models

Due to manufacturing imperfections, pixels in imaging sen-
sors exhibit minor photo response variations (photo-response
non-uniformity or fixed pattern noise) that can be used as
a fingerprint of each device. Its forensic analysis assumes a
simple pixel-wise sensor noise mode

zo = (1 + ako)z + 1, (D

where x is a captured RAW image; x is its idealized noise-
free version; kg is the sensor fingerprint (PRNU); and 7 aggre-
gates all remaining sources of noise. Thanks to the additional
modulation strength « this embedding model is equivalent to
multiplicative spread spectrum watermarking [[66]] and allows
for controlling the distortion-detection trade-off in our simu-
lations. In practice, « is implicitly determined by the camera
hardware. As a result, the sensor fingerprint can be seen as a
free static watermark intrinsically embedded by the sensor.

Even though the PRNU describes sensor behavior at the
RAW level, it is common to assume the same model holds for
RGB imagesﬂ yo = (1 + ako)y + n'. The fingerprint kg is
latent and needs to be estimated; the optimal MLE estimator
uses residual images rg : 79 = yo — ¢ = yko where g is an
estimate of the noise-free image obtained with a denoising
filter. The number of residuals needed for reliable estima-
tion depends on image content, but typically recommended
numbers range between 30 and 100 (see Supplement (B for
our synthetic evaluation). Bright and flat images are preferred
due to the multiplicative nature of the noise and difficulties in
separation from high-frequency content.

Fingerprint detection involves correlation of the image resid-
ual r with the (estimate of the) PRNU fingerprint kj,, yielding
d = r@®k( € [—1, 1]. The problem is commonly formulated as
hypothesis testing with the following conditional distributions:

N(M,Uo)
N(O, 0'1)

d Hy : fingerprint kg is present
H, : fingerprint kg is absent

2Preliminary studies with synthetic signals report that this model may not
be fully accurate [64]. Recent work in image denoising [65] adopts a more
comprehensive image formation model, but to the best of our knowledge such
models have not been considered in forensics yet.

3A recent study addressed this by probabilistic raw pixel estimation [67]).
Similar ISP inversion problems also occur in recent denoising literature [68§].

where 1 > 0 is the expected correlation when the correct
fingerprint is present. Adoption of a Gaussian noise model is
dictated by convenience, and despite mismatched support with
the correlation coefficient, it works well in practice.

This binary-decision formulation is used for attribution. For
manipulation detection, sliding window analysis is used. Mul-
tiplicative nature of the fingerprint complicates the problem
since the expected correlation depends on image content, i.e.,
p = p(Y[+s)), which is addressed by linear regression on
visual content features [1]]. Local tampering probability can be
computed based on a Bayesian formulation spanning a local
neighborhood [2] and multiple scales [3]].

B. Applications and Limitations

The sensor noise model (I) implies several key limitations:

1) weak security - PRNU is a static signal easy to estimate
and spoof, e.g., to conceal traces of content manipulation;
simple addition is effective (y + Srg), but more advanced
attacks exist too [69]]. The triangle test may reveal spoof-
ing in certain conditions [[70} |71].

2) unexpected privacy leak - PRNU is always present and
static, which allows for deanonymization of photogra-
phers by linking a sensitive photo to other images with
established authorship (e.g., on social media) [[19].

3) unreliability for dark & textured content - multiplicative
nature makes the PRNU weak in dark regions; in tex-
tured areas it is difficult to separate from high-frequency
content; this complicates the analysis and even helps
the attackers (the prediction model reveals the expected
correlation and facilitates precise spoofing).

4) low analysis resolution - analysis requires a large sam-
ple size for sufficient statistics, especially in unreliable
regions (dark, textured) or distorted images (compressed,
resized); the standard window size (128 px) is larger than
for other forensic methods and misses small manipula-
tions (compressed images require even larger windows).

5) pixel-perfect synchronization - analysis requires pixel
synchronization between the test image and the sensor;
many common operations violate this assumption and
the problem is addressed by brute-force search in a
parametrized space of the operator; while for some op-
erations (cropping, scaling) the search can be performed
effectively, most operations are intractable.



6) poor scalability - scalability in time is hindered by
expensive search for synchronization; scalability in space
is limited by fingerprint size (dozens of MB per deviceﬂ

Designing a novel sensor fingerprinting system can address
many of these issues and allows for adaptation to various
application requirements and threat models.

C. Generalization of the Embedding and Detection Models

The sensor noise model () is pixel-wise and assumes the
fingerprint components follow an IID normal distribution, i.e.,
k ~ N(0,I). This assumption holds for raw pixels, but it
is typically kept in RGB domain as well, despite correlations
introduced by the camera ISP (e.g., via demosaicing). Effec-
tively, the standard model assumes yo ~ y + ayk{, where
the RGB-domain fingerprint kj, is different (although highly
correlated) from the ground truth kg. Since we are working
with synthetic signals, we can measure and visualize this
behavior (see Supplement [B).

The pixel-wise spread spectrum embedding intrinsically
adopted by PRNU naturally generalizes to a more expressive
model, where each pixel is obtained as a function of a small
neighborhood of both the content and the fingerprint yy =
Y —E (Vs> kg[ is]) where £’ is a generic content-dependent
fingerprint embedding function defined on neighborhood of
size (2s + 1) x (2s 4+ 1). While PRNU uses a simple pixel-
wise multiplicative form of content dependence, data driven
techniques could learn a better mapping. Since embedding
happens in the raw domain, we use the following model:

zo = — E(X[xq]s Kofs)) - 3)

PRNU fingerprint detection involves normalized correlation
between an image residual r and the fingerprint estimate:
d =r® l%. The problem can be generalized in several
ways. We obtained the most reliable results with a correlation-
based model which separately processes the fingerprint and the
image and uses normalized correlation as the final score:

We also experimented with an end-fo-end model which pro-
cesses everything jointly and directly outputs a real-valued
detection score:

d="Da(y ko) €R ®)

Since the fingerprint is generated dynamically, it eliminates
the need for estimation. This saves storage and improves
detection performance (Fig. [B.3] and Fig. [3).

D. Model Architectures and Training

Given embedding and detection models (3)-(3), the goal is
to jointly learn a CSF system (£,D) optimized for a given
acquisition and distribution pipeline. All considered models
can be naturally implemented as CNNs. For simplicity, we

4PRNU is a full-resolution real-valued signal. Scalability can be mitigated
by quantization. While simple binarization leads to poor accuracy, more elabo-
rate dead-zone quantization can be considered in large-scale applications [[72].

assume feed-forward fully convolutional NNs, which can scale
across image resolutions. The encoder is a residual model:

zo =xdko

= s (Bie
E(x, ko) = x0 := %’ 2dyxsxs(Zi-1) ©)

z; =o(z)

xo =X —c2d4x1x1(Zn)

where c2dfysxs is a 2d convolution layer with f filters of
size s X s and o is a non-linear activation function. The input
is a channel-wise concatenation (@) of the image and the
fingerprint. Note that the last layer uses 1 x 1 convolutions
for pixel-wise projection back to the RAW domain. We follow
a convention with standardized representation based on rggb
channels (see Tab. [l).

The detector uses a similar design. The correlation-based
model separately projects the image and the fingerprint to
single-channel representations z, and zj, respectively. It then
computes normalized correlation to yield the detection score.
Each branch uses the same model architecture - Dy, (Zo) -
but uses different input Zg:

Z; = c2dfysxs(Zim1)
Dinsyy(20) = Z(n/yy = 4 2i =0 (zi) @)
Zik/yy = C2d1x1x1(Zn)

One branch processes the fingerprint (Zg = k'), while the other
processes the image (Zgp =y @ R(y); we augment the image
processing branch with a trainable residual layer R(y) that
suppresses image content [29])).

The end-to-end model processes the image and the finger-
print jointly and uses fully connected layers to yield the final
detection score:

~

Zy =YD R(Y) ok’
z; = conv2dpysxs(Zi1)
zi =o(z)
Da(y,kK) > d:= Py =32 (®)
pi = fco, (Pi-1)
pi =o(pi)
d = fCl(f)m)

where fc, denotes a fully connected layer with o outputs and
global average pooling (GAP) is used to standardize an internal
representation pg returned by the last convolutional layer.

For simplicity, convolutional layers share hyper-parameters
(stride of 1 and kernel size s=3) and successive fully connected
layers halve the number of outputs. Model size can be adjusted
using the number of layers (n) and filters (f). Intermediate
layers use LeakyReLU activations and final layers use none.
We illustrate all considered architectures in Fig.

The detector operates in the RGB domain which requires
fingerprint mapping from raw values. In ideal conditions, this
should reflect the mapping performed by the camera ISP.
In practice, we use simple bilinear interpolation which in
preliminary experiments yielded performance equivalent to
preprocessing with the true demosaicing model.



TABLE II
SPOOFING THREAT MODELS: REPRESENTATIVE ATTACKS AND
ATTACKER’S KNOWLEDGE: Ml INDICATES BLACK-BOX MODEL ACCESS; V
INDICATES GRADIENT-BASED OPTIMIZATION.

Attack vector \ Attacker’s knowledge

D) D &

| x yo ko

Phase I : fingerprint estimation

image residual v nla
adversarial w/ proxy detector v n/a v
adversarial w/ proxy encoder v v nla v

Phase II : adversarial image generation

additive residual transfer v

adversarial opt. w/ authorized detector v

adversarial opt. w/ proxy detector v v
approximate fingerprint embedding v | |

Our vanilla training protocol aims to minimize a combina-
tion of image distortion and fingerprint detection losses:

Ly = a|P(x) = P(xo)lly + La(do,d1) 9

where P maps raw images into a domain suitable for percep-
tual comparison. For simplicity, we map into the RGB domain
using the camera ISP (P = Z) but one could also use modern
perceptual metrics based on deep visual representations [73]].
We control the embedding strength via a regularization term
«. The detection terms dyq,1) correspond to positive/negative
detection scores, i.e.,

dO - D(y()’ k6)

d =
d1 = D(yo, k1)

(10)

where k) denotes a different (orthogonal) fingerprint.

The fingerprint detection loss depends on the adopted model
architecture. Let £, denote a logistic loss penalty £;(d) =
log(1 + e?). For the correlation-based model, we used:

La(do,dr) = Li(dy — do) + A [|da]], (1)

which drives negative detections (d;) towards 0 and maximizes
the difference between the detection scores. For the end-to-end
model, we simply used:

La(do,d1) = Li(d1) + Li(—do) (12)

which drives the scores to negative/positive values, respec-
tively (Fig. [2] illustrates how this impacts detection statistics).
Finally, the training algorithm is simply SGD that seeks:

argminEE E E L,
£, D X kokiQF

13)

where the expectation is computed over JPEG QF, images x
and fingerprints ko1 ~ N(0,I) sampled in each step.

IV. THREAT MODELS AND COUNTERMEASURES

In this section we define threat models and attack vectors
and discuss possible countermeasures.

A. Threat Models

Sensor fingerprinting systems are susceptible to two types
of attacks: spoofing and removal. We focus on spoofing since
it has a greater cost of allowing doctored content to pass as
authentic or falsely attributing a photo to a wrong individual.

In the following discussion, we refer to two possible de-
ployments of CSF components:

o an authorized model uses the true fingerprint generated
based on a secret key and context; the model controls
the access interface and may use additional defenses to
thwart/delay adversarial queries.

« a proxy model denotes a deployed leaked model where
the adversary may feed any input as the fingerprint and
disable any defenses or restrictions on query access.

For brevity, we denote the authorized and proxy detectors as
AD and PD, respectively.

Spoofing can be carried out in various ways, depending on
the attacker’s sophistication and knowledge/access level. We
distinguish 3 main attack techniques:

o additive residual transfer (ART) is the simplest attack and
can be carried out without access to any system compo-
nents; it works well against standard PRNU fingerprints;

o approximate fingerprint embedding (AFE) uses a known
(e.g., leaked) embedding model (£) and an adversarial
fingerprint estimate K /; it involves a single forward pass
and hence black-box access (M) is sufficient.

e adversarial image optimization (AlO) applies incremental
updates to the image driven by the gradient of the detector
(V) or its approximation from black-box optimization
(e.g., NES); it requires either a PD (D) or query access
to the AD (D()).

In addition to adversarial image generation, many attacks
also involve a prior fingerprint estimation phase, which can
be implemented using image residuals or gradient-based op-
timization targeting proxy models. We summarize the corre-
sponding threat models and the necessary knowledge on the
attacker’s side in Tab. [II] and formally define all attacks in
Sections and [V-C

We generally assume the attacker has access to a photograph
Yo (with an embedded correct fingerprint k). If the fingerprint
is not content-dependent, yo may not be too difficult to obtain
(e.g., by taking a photo with a spoofed context) or may even
be readily available (when dealing with local content manipu-
lation). When using fingerprints derived from image content,
the attacker needs to look for hash collisions within the same
authentication context. While technically still possible [74], it
significantly raises the bar for a successful attack.

When dealing with optimization-based attacks, we assume
white-box model access which may be overly permissive but
paints the picture of a pessimistic security assessment. In such
deployed proxy models, the attacker can feed arbitrary inputs
as the candidate fingerprints which significantly expands the
attack surface. We show representative attack combinations
in Fig. [C3] We acknowledge that our classification only
scratches the surface, since the attacks have many different
variations that could include not only basic attack settings
and distortion norms/budgets, but also partial knowledge of



the targeted system, e.g., gray-box access to specific models
or prior statistical knowledge of various signals that could
regularize the search space. Out of necessity, we focus our
attention on several representative attacks.

B. Fingerprint Estimation

In this phase, the goal of the attacker is to obtain a
sufficiently accurate estimate kg, of the true fingerprint
ko. We consider two main sources of information leakage:
image residuals and an implicit loss landscape of the embed-
ding/detection models. The former involves computation of a
high-pass residual and treating it (after normalization) as a
fingerprint estimate. This strategy is effective against standard
PRNU where the problem is exacerbated by the static nature
of the fingerprint and prone to continuous refinement as more
images become available.

The residual can be computed by convolution with filter f
and a fingerprint estimate is then obtained by simple normal-
ization:

/ To

kO/r =_—— whererg =f®yo

; (14)
[Iroll

In most situations we use a popular 3 x 3 high-pass residual
filter (f;), and include additional filters (f5, f3 and a DWT
filter commonly used in PRNU analysis [[1]]) in generalization
experiments. The filters are defined as follows:

-1 -2 -1 1[-1 -1 -1
-2 12 2|, fL==|-1 8 —1|, (15)
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White-box access to CSF models enables gradient-based
fingerprint optimization attacks. The attacker can start from
a randomly sampled fingerprint and successively update his
estimate. When using a proxy detector, the goal is to maximize
detectiorﬂ of the known fingerprinted image y:

kf)/d = arg{{nax D(yo, k) (16)
When using a proxy encoder &, the goal is to reproduce the

valid fingerprinted image yo:
ko, = argmin ||Z(E(x, k)) — yoll, (17)

k

The attack on the proxy encoder assumes availability of the
clean raw signal x which is not naturally available without
compromising camera hardware. With careful hardware de-
sign, this attack vector should remain impractical, but it is
currently not clear what would be the impact of approximate

attacks, e.g., where knowledge of the expected image statistics
is leveraged to estimate a clean image.

SWe also experimented with matching the expected or actual detection
scores (argmax || D(yo, k) — do|5), but such attacks were not successful.

Both adversarial attacks can be implemented as iterative
algorithms based on gradient descent/ascent:

o4 = {kiﬂ B k) (18)
k[o] ~ N(0,1)
Ko/e == ki) =7V HI(E(X’k[i])) - yOHz (19)

We normalize the gradient to unit Ls norm and choose the step
size v and the number of steps differently in various contexts.
During in-depth exploratory analysis, we also used a more
advanced optimizer (Adam).

Finally, we note that depending on the target, the attacks
yield either a RAW or RGB-domain fingerprint that may
require remapping depending on the attack strategy. This can
be implemented by demosaicing/sub-sampling, respectively.

C. Adversarial Image Generation

We distinguish 3 types of attacks: additive residual transfer
(ART), adversarial image optimization (AlO) and approximate
fingerprint embedding (AFE).

a) ART: Residual transfers represent naive attackers with
access only to the fingerprinted image y(. The attacker esti-
mates the residual ry and adds it to the target image y:

Yo+ =¥+ Brolrolly =y + Bkoy (20)

The attack strength § controls the trade-off between image
distortion and spoofing success rate. To unify selection of 3,
the residual is normalized to unit variance. In our experiments,
we use the residual filter f; and sweep 8 € [0.001,0.04].

b) AIO: Adversarial optimization uses gradients of the
proxy detector to reach the desired target response. Hence,
the attack is universal and can be used both for spoofing and
removal under the same generic formulation:

Yoyv = argmin L, (do,.) = argmin L (D(y, 6/*)) (21)
y y

The attack requires a fingerprint estimate kj,, (Sec. |
and an objective function £;. We found that a variation of the
logistic loss works well in practice:

L4(d) = log (1 + eﬂd*df)) 22)

It corresponds to a gentle push over/below the decision bound-
ary d, (for spoofing/removal, respectively). We use a multi-
step projected gradient descent (PGD) attack with the L.
distortion model:

i — 7 sen (VyLs (doys))

Yo=Y
Yo = Yo

Yo/v = for spoofing (23)

for removal

To control imperceptibility, we constrain the distortion bud-
get e. When using multiple steps m, we reduce the step size
accordingly (y = 3). In the end, we quantize the result to



Algorithm 1 Pseudo-code for content fingerprint generation.
Input: y (or x)

> input image patch

Input: p > projection patch size (p X p)
Input: ng > number of Gaussian filtering steps
Input: ny > number of hash bits
Input: 7 > random projection threshold
Input: ¢ > number of sampled hash bits
Input: (w, h) > fingerprint patch size (w X h)
Input: (x,b) > contex: camera key, patch location

y < Standardize(y) > standardize and reshape (1 x p?)
Seed PRNG with (k)
P ~ U(0,1)™hXPXP
fori €1 .. ngdo
P «+ GaussianBlur(P)
end for
P <+ Normalize(P)
h+ |yPT| > 7
u <~ 0™h XwXh
foriel..npdo
[p1, ..., pq] < g-element permutation of h
Seed PRNG with (5, b, h[p1], ..., h[pq])

ufi] ~ U(—1,1)wxh > sample individual uniform components

end for
VeX,u

> sample random projection matrices
> blur to emphasize low frequencies

. 2
> normalize and reshape (np X p<)
> robust-hash computation

return > aggregate to a w X h fingerprint, ~ N (0, I)

obtain valid uint8 images. This makes the attack flexible
and remains fast and manageable in large-scale evaluatiorﬂ

c) AFE: Having access to the encoder (and ideally the
camera ISP as well), the attacker can spoof the fingerprint by
embedding its approximation kg /. (For PRNU this is similar
to the transfer attack, but is more faithful as it modulates the
embedding strength in a multiplicative manner.) This attack
assumes the attacker possesses a raw version of the target
image (or can invert the ISP [68| 76]). Formally:

Yo/~ =T (E(x,Kkoys)) (24)

D. Fingerprint Generation

We evaluate two main approaches to defend against spoof-
ing: generation of the fingerprint based on local image content,
and adversarial training which models and penalizes spoofing
in the training loop. We discuss both approaches below.

Standard PRNU fingerprints are static, which makes them
straightforward to estimate and spoof. In contrast, computa-
tional fingerprints can be generated dynamically which allows
for better control over their security and privacy properties.
Depending on the application at hand and the assumed threat
model, various options can be considered:

e static fingerprints (e.g., unique for a camera model) could
be useful for non-adversarial applications and would al-
leviate privacy leaks related to unique device fingerprints.

o dynamic sampled fingerprints are generated based on
a secret key and context of capture (time, location,
nonce, etc.); they require possession of the right source
image with the valid fingerprint and enforce estimation
from a single photograph. (In some settings, e.g., when

SWe also experimented with C&W attacks under the Lo distortion
model [[75] and with full gradient magnitude information. However, such
attacks proved difficult to work with due to essential projection to 8-bit
precision. Rounding every 10-20 steps often works well, but we were unable
to choose attack parameters that would consistently yield good results.

addressing local photo manipulation, the source image
may be readily available.)

« dynamic content fingerprints are generated based on local
image content and further raise the bar for the attacker
by requiring search for fingerprint collisions.

Controlled fingerprint generation allows for adaptation to
various applications. It may also be desirable to embed mul-
tiple fingerprints with different properties.

E. Content Fingerprints

Content fingerprints provide a separate layer of security
which directly prevents spoofing by requiring the attacker to
look for fingerprint collisions within the same capture context.
The fingerprint can be derived from a robust hash which is
sensitive to content replacement, but remains robust to benign
processing (brightness adjustment, compression, etc.).

For simplicity, we use a well studied hash function [77] and
add an image standardization step to facilitate cross-domain
matching, i.e., the encoder operates in the RAW domain, while
the detector in the RGB domain. For RGB images, we down-
sample the patch to fixed dimensions, take the average over
color channels and normalize the input to have 0 mean and unit
standard deviation. For RAW images, the process is similar,
but takes into account pixel alignment in the Bayer array and
adds gamma correction before normalization.

The next step is to derive a robust hash. For each requested
bit of the hash (ny), a random projection matrix is sampled
P ~ U(0,1)P*P), blurred a few times to focus on low
frequencies and normalized. Absolute value of projected image
content is then compared to a threshold 7. Finally, a w x h
fingerprint ky, /.1 is generated by progressive accumulation of
uniformly distributed random noise images ~ U(—1,1)**"
seeded by camera key, patch location and ¢ randomly chosen
bits of the hash. Such an approach leads to an approximately
Gaussian fingerprint that changes with content replacement,
but remains similar under benign post-processing. We summa-
rize the process in Algorithm |l| and refer to [77] for details.
Learning a better visual hash is an interesting problem for
future work.

F. Adversarial Training

An adversarial training protocol includes additional defense
terms L, in the training loss:

Loy = ||y = yolly + La(do, d1) + ALy (25)
e.g., to penalize detection of adversarial images in the A
Ea =L_ (dO/*) : dO/* = D(yO/*ak/O)

where £_ denotes a negative detection penalty for the current
detector architecture. This approach is analogous to adversarial
training from computer vision [78]] and aims to directly reject

(26)

7We also experimented with other defenses, including penalties on adver-
sarial fingerprint estimation, e.g., correlation with the true fingerprint. While
we obtained promising preliminary results, this approach proved difficult to
work with and comprehensive threat modeling turned out to be impractical.
We discuss our key observations and the issues we encountered in Section@



spoofed samples. In this paper, we focus on two adversarial
inputs: yg,4 and yg,v which correspond to ART and AIO
attacks, respectively.

During adversarial training we sample an additional batch
for the attacker, e.g., for fingerprint transfer or adversar-
ial spoofing. In transfer attacks, we use random strength
B ~ U(0.01,0.02). For adversarial spoofing, we use multi-
step PGD (Section [[V-C) with L., distortion budget € ~
U({5=, 555 }), a random number of steps (uniform choice
from {1,...,5}), and the correct secret fingerprint. The result-
ing images are quantized with standard uint8 precision.

V. EXPERIMENTAL EVALUATION

In this section, we compare the computational and intrinsic
sensor fingerprints and discuss their relationship with digital
watermarking. We begin by describing our experimental setup
and proceed to assess detection performance, visual examples
and security properties.

A. Simulation Environment and Setup

We implemented all experiments in our neural imaging
toolbox, a high-fidelity simulation environment built from
scratch in Python 3.x and Tensorflow 2.x. The toolbox allows
for end-to-end modeling and optimization of the entire photo
acquisition and distribution pipeline and enables interesting
feedback loops, e.g., optimization of the camera ISP [[11} 27],
lossy image codecs [28]] or imaging sensors (this study) based
on image analysis performance at the end of complex dis-
tribution channels. Our toolbox provides various components
that can be assembled into arbitrary pipelines to model diverse
imaging applications; some of the key components include the
camera ISP (conventional and neural), JPEG codecs (standard
and fully differentiable), and a lossy learned codec.

All experiments used the same common setup (Fig.
and the same components (JPEG codec, camera ISP, etc.) -
the models differed only in the sensor/detector blocks. We
simulate dynamic fingerprints by sampling from a Gaussian
distribution. For PRNU, we consider both estimated and
ground truth fingerprints and both the standard DWT and
learned CNN denoisers (Supplement [B). For the CSF we use
compact CNNs with n = 4 layers and f = 16 feature channels
which comes down to ~22k parameters (the correlation-based
detector with 2 branches has ~42k parameters). We used small
models to facilitate deployment in a constrained runtime of
the sensor. Since the specification of the inference accelerator
is unknown, and the reported computational resources vary
significantly [[13H15]], we leave exploration of optimal model
architectures for future work.

We implemented our own JPEG codec, which approximates
rounding with a soft relaxation to enable gradient computation
in the backward pass [27] (standard rounding is used in the
forward pass). This leads to a differentiable codec that closely
approximates the standard 1ibJPEG (Fig. [A.2] and Fig. [A.3).
For camera ISP, we used a standard pipeline with simple NN-
based demosaicing. We discuss both components in detail in
supplementary materials (Supplement [A).

In most experiments we use photos from Nikon D90
(RAISE [79] dataset) and instantiate different devices by
sampling multiple sensor fingerprints (k ~ A/(0,I)). During
development, we also used Canon EOS-40D (MIT-5k [_80]]
dataset) to validate generalization of basic components. For
both cameras, we collected 150 full-resolution images and split
them into 100:50 for various training/validation tasks. Given
full resolution images, we sample patches randomly (while
maintaining CFA alignment). Training patches are sampled
in each iteration (which serves as an additional augmentation
mechanism), while validation patches are sampled only once;
for each validation image, we sampled 5 patches, leading to
250 test images. We work with 128 x 128 px patches, which are
commonly used in local PRNU analysis. For model training,
we include JPEG compression with QF ~ ¢/(80, 100) and later
vary the QF in various validation experiments.

When measuring detection performance, we focus on two
main metrics: AUC corresponds to the area under the ROC
curve; and TPR-1 corresponds to the true positive rate in the
fixed 1% false positive rate regime.

B. The Distortion-Detection Trade-off

The distortion-detection trade-off shows how effectively a
fingerprinting system exchanges the incurred image distortion
for detection performance. To simulate different camera in-
stances, we sampled 100 fingerprints. In Fig. [2| we compare
detection statistics for both the correlation-based and end-to-
end CSF systems with the same JPEG compression strength
as used at the training time (QF~ /(80,100)). In Fig.
we show the entire detection-distortion trade-off for stronger
compression outside of the training range (QF=50) and com-
pare example CSF systems against PRNU fingerprints. We
sweep various embedding strengths to explore the limits of
the inherent embedding-detection model and not a particular
instance determined by a specific sensor.

For PRNU, we include results with both CNN/DWT-based
denoisers and ground-truth/estimated sensor fingerprints. Us-
ing ground-truth fingerprints is possible only in simulations
and can be seen as an upper bound of the detection capability
and is equivalent to spread spectrum watermarking (similarity,
which we explore in detail in Section [V-C)). For fingerprint
estimation, we used 50 residuals from random images. While
PRNU is an intrinsic watermark with no explicit distortion
control, we obtain the trade-off curve by modulating the
embedding strength « in (). In practice, each sensor exhibits
its own inherent embedding strength; comparison of detection
responses in values reported for real PRNU [81]] leads us to
suspect that the typical value could be o ~ 0.004. Regardless
of the embedding strength, the plot shows that the learned
CSF systems are more effective and can deliver more reliable
detection at lower cost (distortion). For reference, we show
full ROC curves in the bottom subplot of Fig. [3

This confirms that a learned system can outperform intrinsic
sensor fingerprints by a large margin. Adding proactive content
protection mechanisms into digital cameras does not need to
introduce excessive image distortion.
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Fig. 2. Distributions of the detection statistics for vanilla CSF systems (both correlation-based and end-to-end) trained at different quality levels «. The
models were tested on image patches compressed with JPEG at random quality levels from [80,100]. Numbers in brackets show the sample means.
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Fig. 3. The detection-distortion trade-off and ROC curves for various sensor
fingerprinting systems tested on JPEG images (QF=50); CSF was trained on
JPEG with QF sampled from [80,100].

TABLE III
SUMMARY OF THE COMPARED EMBEDDING-DETECTION STRATEGIES

Embedding rule Detector (processing) Detection statistic

z(1 + ako) DWT denoiser NCC
x(1 + ako) CNN denoiser! NCC
r + akg DWT denoiser NCC
x + akg 2-branch CNN2 NCC
@ — E(X[4s], Ko[as])  2-branch CNN? NCC

T — E(X[+4], Koj£s])  €2e CNN?2

T pretrained separately for multiplicative noise extraction (Supplement |B-A
2 trained for the task at hand (Section [[II-D

fully connected NN

C. Comparison with Digital Watermarking

As discussed in Section [III-Al both the intrinsic and com-
putational sensor fingerprints can be seen as digital water-
marks. In particular, PRNU is a simple “free” watermark
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Fig. 4. Comparison with classic spread spectrum watermarking (detection of
a known fingerprint in RGB images compressed with JPEG QF=50).

with no control over its properties (including the embedding
strength); it is equivalent to multiplicative spread spectrum
watermarking [66]. On the other hand, the proposed CSF can
be seen as a generalization of spread spectrum watermarking
with automatic end-to-end adaptation to complex distribution
channels and different embedding and detection domains.

In this experiment, we provide a detailed comparison of
our model with spread spectrum watermarking. We carefully
compare all systems in the same conditions and include both
the additive and multiplicative embedding rules:

r + akg 27
1,‘(1 + Oék‘o) (28)

The remaining pipeline remains unchanged, i.e., we still per-
form cross-domain embedding/detection and use the camera
ISP and lossy compression as the distribution channel. Since
the tested watermark is known to the detector, this corresponds
to our experiments with ground truth fingerprints.

For each of the embedding strategies, we test two different
detectors. In addition to the standard one, we also include

o =

Tro —
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Fig. 5. Example fingerprinted images (2nd row) and isolated embedding
distortion. Rows 3-4 compare the distortion for two random fingerprints.
Successive columns compare changes with image content. The fingerprint
remains imperceptible despite delivering good detection performance.

learning-based models: for multiplicative spread spectrum, we
include the CNN-based model that was separately pre-trained
for noise extraction (Supplement [B-A); for additive spread
spectrum, we use the correlation-based detector (Eq.|7) with 2
branches of 4 convolutional layers (32 filters each) trained in
the full detection loop with QF~ #/(80,100) in the channel.
We summarize all tested models in Tab. [Tl

We show the obtained results in Fig. [ which compares the
detection-distortion trade-off (for QF=50) using both SSIM
and PSNR. Both spread spectrum techniques lead to similar
detection performance and preference for either depends on
the metric of interest. Benefits of learning-based detectors
varied from negligible to incremental, which suggests that the
embedding strategy is indeed the bottleneck. Despite small
CNN models the CSF system consistently delivered better
results than our spread spectrum baselines. This confirms
that neural networks are an effective solution to learning
end-to-end data hiding systems for complex channels (here
a combination of camera ISP and lossy compression with
cross-domain embedding-detection). At the same time, we
acknowledge that our baselines were standard spatial-domain
watermarks and better systems can be obtained with additional
research and development (e.g., transition to a transform do-
main). That being said, it would also be interesting to explore
other neural network architectures, especially with real-world
hardware constraints.

D. Visual Examples

Fig. [5] shows typical examples of fingerprinted images (yo)
and true residuals (y(o,1} —y). We show how the embedding
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TABLE IV
PARAMETERS OF THE ROBUST HASH AND CONTENT FINGERPRINT

Parameter Symbol  Value
patch size for projection p 64
projection threshold T 10
number of Gaussian filtering steps ng 4
number of hash bits (total) Np 50
number of hash bits (sampled) q [4,30]

distortion changes with image content (column-wise) and
sampled fingerprints (rows 3 and 4 compare residuals obtained
with two orthogonal fingerprints ko and k;). The last row
illustrates the frequency allocation of the learned embedding
strategy (FFT domain). The distortion usually appears as a
semi-regular texture with orientation and frequency selection
changing across training repetitions. The magnitude of embed-
ding distortion changes locally based on image content, but
we did not observe strong content-adaptivity of the learned
embedding strategy. The incurred image distortion is mostly
imperceptible and leads to good detection performance at high
fidelity levels (e.g., & = 0.25 with SSIM~0.997; cf. Fig. 2]
and Fig. [3). Interestingly, the frequency allocation varies with
training repetition, image fidelity and detection statistic (we
show more visual examples in Fig. |C.2).

E. Impact of Content Fingerprints

In this section, we assess cross-domain (RAW-RGB) fin-
gerprint similarity and evaluate its impact on detection perfor-
mance. At the sensor level, we compute a robust hash from
a raw image x and derive a fingerprint k,. On the detector’s
side we use a JPEG-compressed RGB image, yielding k,.
We investigate how the number of sampled hash bits (q)
affects both detection performance and spoofing attempts in
two representative black-box and white-box attacks. We seed
the PRNG only with bits sampled from the robust hash to
simulate camera key and patch location agreement.

The number of sampled hash bits controls the robustness-
security trade-off. The fingerprint needs to be sensitive to
content replacement and robust to benign post-processing (e.g.,
lossy compression). Sampling more bits makes collisions less
likely, but also reduces legitimate matching performance. We
sweep ¢ from 4 to 30 (out of 50; see Tab. [[V]for all parameters)
and assess how the choice impacts several key metrics for a
vanilla correlation-based CSF (a = 0.25).

Fig. [6fa) shows how ¢ impacts detection performance on
250 images from 100 different cameras (different fingerprints)
under strong JPEG compression with QF ~ 1/(50, 100). The
detection performance peaks for ¢ ~ 12 and then starts to
slowly deteriorate. Overall, the process is robust and works
well despite cross-domain (RAW-RGB) matching and lossy
compression. Fig. [[(d) shows histograms of fingerprint corre-
lations for same and different image pairs.

Similar number of sampled bits (¢ ~ 15) seems to suffice
to obtain good resistance to spoofing. Fig. [6(bc) show success
rates (out of 10,000 attempts) for two representative attacks:



(a) detection performance vs. # sampled hash bits

(b) white-box spoofing success rate (AIO)

(c) black-box spoofing success rate (ART)
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Fig. 6. Impact of content fingerprints (with different number of sampled hash bits g) on the detection performance and spoofing success rates: (a) detection
AUC compared with sampled random fingerprints; (b) and (c) spoofing success rates for white-box AIO and black-box ART attacks; (d) cross-domain
(RAW-RGB) fingerprint similarity with JPEG compression; (e) and (f) comparison of detection statistics for content and random fingerprints.
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Fig. 7. Detailed breakdown of spoofing success rates by content fingerprint
correlation: (top) black-box transfer attack; (bottom) white-box optimization
attack. Shaded regions corresponds to the Wilson confidence intervals at the
95% level. Frequency of observed cases is shown as histograms above each
plot. For clarity, outliers that inflate the mean are not shown.

o in the black-box setting we use the ART attack and add
a normalized residual (from a 3 x 3 filter f;) modulated
to yield MSE ~ ﬁ;

o in the white-box setting we perform the multi-step AIO
attack driven by an adversarial fingerprint; the attacker
uses the PD to maximize the detection response - first to
estimate the fingerprint (k{ / 2)» and then the target image;

0.17 0.36 0.38 0.42 0.90

0.0 02 0.4 0.6 0.8 1.0
fingerprint correlation for pairs of different images

Fig. 8. Illustration of content fingerprint collisions: distribution of fingerprint
correlation scores across 2,000 different image pairs and 6 top-ranking cases -
despite differences in color and brightness, the patches share similar structure.

1

we constrained the L, budget of the attack to € = 5.

Both attacks are formally defined in 20) and (23). As ex-
pected, the white-box attack consistently reaches better success
rates. The solid lines in Fig. [f[bc) depict attacks driven by con-
tent fingerprints extracted from a different image (randomly
selected). We also show baseline success rates (dotted black
line) for spoofing using a fingerprint estimate obtained from
the same content (still cross-domain). This validates the attacks
and establishes baseline performance.

The discrepancy between the success rates demonstrates
that using content fingerprints is an effective way to make
spoofing attacks more difficult. We note that the process is
stochastic and the performance varies with content similarity.
While the reduction is significant, the success rates cannot
be made arbitrarily small (in this experiment, the average
saturates at ~~4%). This is caused by naturally occurring colli-
sions within our validation images - sampling random patches
extracts some nearly-empty patches (e.g., sky) that are likely
to collide. This artificially inflates success rates since real-
world forgeries are unlikely to involve replacement of empty
blocks with other instances of empty blocks. Disregarding
outliers and including only cases with fingerprint correlation
<0.1 yields average success rates of 1.7% and 0.9%. That
being said, a comprehensive assessment that takes into account
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Fig. 10. Unexpected pathology in the adversarially learned detection metric:
including residual transfer attacks enables PGD spoofing in the PD based on
a random fingerprint.

realistic manipulations (including subtle ones, like face or text
replacement) is an interesting topic for future work.

To obtain more insights we break the results down by
fingerprint similarity (Fig. [/). Greater fingerprint correlations
translate to greater success rates and the increase starts to
accelerate £ 0.02. For presentation clarity, we omitted the
rare outliers that typically succeed (and inflate the average
success rate) and show them separately instead. Fig. [§] shows
6 top-ranking pairs of different images that yielded the highest
fingerprint correlation among 2,000 attempts. The highest
scoring cases correspond to high-level structure similarity and
are most common for empty patches.

Finally, Fig. [6(ef) compare detection statistics for sampled
(ko) and content fingerprints (k{,,1). While the former have
the advantage of perfect knowledge (the detector simply re-
samples the secret fingerprint), the content fingerprint remains
remarkably robust, even in the presence of lossy compres-
sion. Detection performance degradation is limited, with AUC
dropping from 0.995 to 0.954 and TPR-1 from 0.962 to 0.741
for JPEG QF ~ U(50,100). Further parameter fine-tuning or
even learning a novel visual hash optimized for this scenario
should lead to even better performance. Overall, using content
fingerprints appears to be a viable solution with good detection
performance and significantly reduced attack surface.

FE. Impact of Adversarial Training

We summarize representative results for two example at-
tacks: ART and multi-step gradient-based AIO.

a) ART Attacks: Modeling residual transfer consistently

leads to significant reduction in attack success rates. Penalizing

(a) vanilla model (b) adversarial model
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Fig. 11. Success rate of AIO attacks driven by the true fingerprint for a vanilla
(a) and adversarial model (b). Attacks against vanilla models always succeed,
regardless of the distortion budget (¢) or the number of steps. Adversarial
model shows some resistance, but fails to generalize to diverse attack settings.

addition of a high-frequency residual from a simple 3 x 3
filter (f1) nearly eliminates this attack and shows non-trivial
generalization to other filters. We show the trade-off between
the attack success rate and the incurred image distortion (mea-
sured as lower SSIM percentile to better illustrate the effect) in
Fig. [0 Successive columns correspond to a correlation-based
detector, an end-to-end detector, and standard PRNU.

For vanilla CSF systems (blue line), the attack steadily
improves with image distortion and eventually reaches ~100%
success rate. For adversarially trained models, this drops to
~0% (with a small temporary increase to ~10%) when the
attacker uses the same filter as the defense (f;). The effect
still persists, although to a various degree, when the filters
do not match. For a different 3 x 3 filter (f3), the behavior
remains unaffected. For the standard DWT filter used in PRNU
analysis, the success rate initially increases (typically up to 25-
50%) and then drops again for larger image distortion. The
defense was the barely effective for a 5 x 5 filter (f3).

Overall, modeling transfer attacks has a strong effect with
non-trivial (although ultimately insufficient) degree of gen-
eralization. We obtained similar results for both detector
architectures (Fig. E[) However, the cause for the behavior
appears to differ substantially. For the correlation-based detec-
tor, embedding appears to move to lower frequencies, which
suggests that the defense may simply be shifting the fingerprint
outside of the bands retained by the filter. While both the
attacker and the defense can adapt, leading to an adversarial
dynamic, we expect the attacker has the upper hand.

For the end-to-end detector the embedding distortion re-



mains similar to the vanilla model, which indicates that the
learned detection metric changes in an different way. In follow
up in-depth experiments we discovered that it can aggravate
unexpected failure modes in gradient-based attacks in the PD
- an attacker can succeed by following gradients obtained with
a random fingerprint and his chances keep increasing with the
distortion budget (Fig. [I0). It is not clear how to rigorously
understand behavior of a learned detection metric and how
to discover and prevent similar pathologies. Learned detection
metrics appear to be poorly suited for sensitive applications
prone to adversarial inputs.

For reference, we show the corresponding results for PRNU
(Fig.[9] 3rd column), which exhibits analogous behavior as the
vanilla CSF. When multiple images with the same fingerprint
are available, the effectiveness of the attack improves rapidly.
Averaging merely 10 residuals (from randomly chosen natural
images) leads to a 100% effective attack at a negligible
distortion, which emphasizes the pitfalls of static fingerprints.

Finally, we note that modeling ART attacks reduced de-
tection performance. For the correlation-based model, we
needed to increase importance of the detection loss (o
0.1), yielding still imperceptible distortion with SSIM 0.994.
Although AUC dropped only slightly (from 1.0 to 0.98), the
deterioration happens primarily in the low FPR regime - TPR-
1 dropped from nearly 1 to 0.91. For the end-to-end model the
deterioration was not as significant, AUC dropped from 1.0 to
0.99 and TPR-1 from 0.99 to 0.94.

b) AIO Attacks: Adversarial training reduces efficacy of
PGD attacks, but does not eliminate them, even for variants
presented during training. In this experiment, we used a multi-
step PGD attack (Section driven by the true fingerprint
and constrained by an L., distortion budget e. The attack
always succeeds against vanilla trained models - regardless
of the distortion budget and the number of steps (Fig. [[Th).

For an adversarially trained model the spoofing efficacy can
drop substantially, but the effect has insufficient generalization
and tends to vary across attack settings and training repetitions.
We show success rates for an example end-to-end CSF system
in Fig. [[Tp. The model was trained to withstand ART attacks
as well as AIO attacks with € ~ U({5t=, 52: }) and < 6 steps
(with JPEG QF ~ 1{(80,100)). We can observe that using
more steps leads to more effective spoofing, even for attack
configurations observed at the training time. While a different
detection architecture could possibly handle this better, we did
not observe substantial improvements even for much larger
detectors (we tried models with 32 and 64 filters with 85k
and 325k parameters, respectively).

G. Key Observations on Security Evaluation

We performed extensive experiments to assess susceptibility
to representative attacks within various threat models. We
summarize our key observations and example results below.

Our first observation is that single-use dynamic fingerprints
are not sufficient to resist spoofing. Nearly all attacks suc-
ceeded against both standard PRNU and vanilla CSF systems
- although with only 1 image available to the forger, many
attacks turned out to be less effective against PRNU’s pixel-
wise multiplicative embedding. Even though estimation from

a single image is prone to contamination with its content and
generally yields low correlation with the true fingerprint, such
adversarial estimates typically suffice for at least some attacks
to fool a vanilla detector.

Secondly, we learned that adversarial training is insufficient
and is overly complex for comprehensive attack modeling.
While for some attacks significant improvements are possible,
the defenses are typically not fully effective and generalization
to unseen attack settings varies. Most defenses require a
trainable detection metric (used in our end-to-end detector),
which remains an inexplicable black box prone to unexpected
failure modes upon in-depth exploratory analysis.

Attacks involving proxy models proved particularly chal-
lenging. We identified a few generic strategies that can hinder
adversarial fingerprint estimation in the PD and inhibit various
attacks across a broad range of settings. However, the process
is brittle and addressing multiple attack vectors simultaneously
often led to unstable training and diverse model behavior,
which remains non-trivial to measure. For example, we learned
that targeting low similarity with the secret fingerprint proved
insufficient. Despite nearly zero correlation and overlapping
detection statistics, the adversarial fingerprint may still possess
vestigial predictive capacity sufficient to drive gradient-based
spoofing attacks to occasional success. We eventually adopted
a few mitigation strategies (a vanilla warmup period, periodic
checkpoints to keep the best model) and obtained several
promising models, but ultimately were unable to control this
behavior consistently.

VI. DISCUSSION AND LIMITATIONS

The emerging neural sensors open a new direction for
proactive photo authentication methods and enable content
protection at the very beginning of its digital life-cycle. This
allows for processing protected raw images with 3rd party
digital darkroom software and, given proper implementation in
hardware, would not be susceptible to counter-forensics using
tampered camera firmware [26]]. Running NN models directly
on raw pixels allows for end-to-end optimization, including
adaptation to complex, analytically intractable channels. Com-
pared to intrinsic sensor fingerprints, we consistently obtained
much better robustness at a lower image distortion even for
simple models. This demonstrates that adoption of proactive
protection mechanisms does not need to negatively impact
image quality - one of the key aspects for camera vendors.

A next-generation sensor fingerprinting system can also
meet various security & privacy requirements. Control over
fingerprint generation creates new opportunities for protection
against spoofing attacks - which are trivial for PRNU. We
experimented with two different approaches to the problem.
First, we performed extensive evaluation of adversarial train-
ing which proved to be insufficient and difficult to work
with. Significant improvements are possible for some attacks,
e.g., residual transfer, but efficacy and generalization capa-
bilities vary. Moreover, obtaining comprehensive resistance
to multiple attacks proved to be problematic - in particular
when addressing proxy models. We encountered problems
with training stability, large variation of security properties



and unexpected failure modes. We briefly explained our key
observations in Sections [V-H and V-G

We obtained more promising results with content finger-
prints, which change depending on the local image content
and provide a separate layer of security. As a first step, we
used a simple and popular fingerprint derived from a robust
visual hash [[77] and demonstrated that it works well in a cross-
domain (RAW-RGB) setting. It yields minimal deterioration
of detection performance while providing strong resistance
to spoofing. While it does not eliminate the possibility of
spoofing entirely, it significantly raises the bar for an attacker.
It currently appears to be the most reliable way of addressing
the problem. Although it remains a best-effort solution, it may
still be useful in practice. Many image forgeries rely on easily
accessible tools and lack sophistication.

Adoption of computational sensor fingerprints can be bene-
ficial beyond adversarial use-cases. Even simple interventions
to improve fingerprint detection in difficult areas (dark/tex-
tured) would lead to considerable performance improvements
and allow for more precise manipulation localization [3].
Moreover, dynamic fingerprint generation eliminates the need
for fingerprint estimation and storage, which improves detec-
tion performance and scalability. PRNU is a full resolution
real-valued fingerprint which requires dozens of megabytes
for each supported camera instance.

We experimented with two distinct architectures of the CSF
detector: a 2-branch CNN based on correlation and an end-
to-end model based on fully connected layers. They deliver
similar detection performance, but the former behaves more
consistently and is understandable to humans. While the latter
approach is more expressive and could potentially learn a
better, data-driven detection metric, it remains an inexplica-
ble black-box prone to unexpected behavior - especially on
adversarial inputs. A more rigorous approach based on metric
learning [|82]] and intuitive explanation of the learned detection
rule could be an interesting direction for future research given
the fundamentally asymmetric nature of the comparison (the
image undergoes different distortions than an adversarially
estimated fingerprint).

One of the primary limitations of the current work consists
in its simulated character. We have implemented a high-fidelity
simulation environment that provides multiple components
for modeling photo acquisition and distribution pipelines.
We performed various experiments to validate the models,
including both qualitative and quantitative comparison of our
differentiable JPEG codec (Fig. and generalization of our
CNN-based PRNU extraction to real-world images [83]] (Sup-
plement [A). While these experiments were successful, more
effort is needed to validate the CSF system against industry-
standard camera ISPs and to deploy it in real hardware.
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APPENDIX A
NEURAL IMAGING TOOLBOX COMPONENTS

In Section |V} we briefly introduced our simulation toolbox. Here, we provide additional details about the key components
used in our experiments.

A. Camera ISP

We use a simple camera ISP with NN-based demosaicing and typical post-processing: standard SRGB color conversion (based
on true conversion tables extracted from photo meta-data) and gamma correction. We skip global brightness normalization to
enable operation on image patches without a broader context.

The demosaicing model M is a fully convolutional NN with 4 layers (32 filters of size 3 x 3) and a final linear projection
(1 x 1 convolution) yielding a residual wrt. bilinear interpolation. The model has 29k parameters and was trained separately
to minimize the MSE loss on 8,192 RGB mixed natural images with diverse content (natural photographs and computer
graphics) [28|]. The images were down-sized to increase the level of detail and eliminate any previous imaging artifacts. Color
channels were sampled at the training time according to a random 2 x 2 Bayer filter. Fig. [A.T| shows example images developed
by our ISP.

B. Differentiable JPEG Codec

We implemented a diff/PEG codec which closely approximates the standard JPEG, but remains differentiable and can be
plugged into the training loop. Successive steps are implemented as matrix multiplication, reshaping and convolution layers:

« RGB to/from YCbCr color-space conversions are implemented as 1 x 1 convolutions.

« Isolation of 8 x 8 blocks for independent processing is implemented by combining space-to-depth and reshaping operations.

« 2D discrete cosine transforms are implemented by matrix multiplication (DzD? where x denotes an 8 x 8 array, and D
is the transformation matrix).

« Division/multiplication of DCT coefficients by the corresponding quantization steps are implemented as element-wise
operations with tiled and concatenated quantization matrices (both the luminance and chrominance channels).

o The actual quantization is approximated by a continuous function p(z) - see details below.

The key problem in making JPEG fully differentiable lies in the rounding of DCT coefficients. To obtain a differentiable
relaxation, we started with a Taylor series expansion and eventually converged to a single sinusoidal term with adjusted phase

matched to a sawtooth function: .
sin(27x)

27

This approximation is used only in the backward pass (during gradient computation). In the forward pass, we use the standard
rounding operator, which leads to compression results equivalent to libJPEG. In Fig. [A.2] we compare image quality (measured
by SSIM) across various QF settings which reveal a nearly perfect match. In Fig. we compare an example image patch,
which also looks nearly identical across various quality levels. The biggest discrepancies can be observed for extremely low
quality factors (QF ~15) and above QF ~95, which is the maximal level supported by our version of 1ibJPEG (all values
above 95 resulted in identical images).
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APPENDIX B
PRNU SYNTHESIS RESULTS

We provide additional results that explore the behavior of synthetic PRNU fingerprints and highlight their potential for
training better denoisers. Since PRNU is a latent signal, it can only be estimated in real-world experiments. Our simulation
toolbox brings new capabilities to the research community, such as precise assessment of fingerprint estimation quality and its
impact on detection performance, or large-scale error rate assessment by generating an arbitrary number of unique fingerprints.
While a detailed exploration of all new capabilities is out of scope of this work, we include some exploratory results below.

A. PRNU Estimators and Denoiser Training

Throughout the paper, we use the MLE estimato with: (1) the standard wavelet-based denoising [1]], (2) a neural network-
based residual. We use the same generic convolutional network architecture as for the other models (e.g., demosaicing), i.e.:
10 convolutional layers with 32 filters of size 3 x 3 and a final projection layer with a 1 x 1 convolution. All intermediate
layers use LeakyReLU activations. The model is fully convolutional (can be used for any image size) and outputs a 3-channel
residual multiplied by a trainable scalar.

We train the model Rx by minimizing the MSE loss w.r.t. the ground truth fingerprint mapped into the RGB domain. We
embed the fingerprint using the standard multiplicative model (T)). In each step, we sample a training batch x (cropped randomly
from full-resolution images from Nikon D90), a new ground truth fingerprint ko, an embedding strength o ~ 2/(0.01,0.05),
and JPEG quality factor QF ~ /(85,100):

argminE E E E || Ry o Cor 0 Z(x + ax- ko) — M(ko)||,
Ry x ko QF

We use zero-mean averaging and dispense with Wiener filtering, which consistently hurt performance in all experiments

(both on simulated and real PRNUs; Section |B-C)).

B. Exploratory Analysis with Synthetic Fingerprints

Fig. [B.1| compares fingerprint estimation examples for the wavelet (top 2 rows) and CNN residuals (bottom 2). The images
correspond to the red channel of the ground-truth fingerprint in the RAW and RGB domains (col. 1/2) and several estimates
obtained from increasing number of natural images compressed with JPEG QF=90 (col. 3-7).

Visually speaking, the CNN extracts a cleaner fingerprint. While the wavelet denoiser retains an obvious blocking grid
even after averaging 150 residuals, the CNN yields a grid-free output from only 5 residuals. Given the same number of input
images, the CNN’s output consistently correlates better with the ground truth fingerprint (col. 1): e.g., using 50 images yields
correlations (with k{) of 0.21 and 0.36 for the wavelet and CNN denoisers, respectively. While the CNN tends to over-smooth
the estimate, the actual fingerprint indeed exhibits spatial correlations in the RGB domain (from demosaicing).

The improved fingerprint estimates lead to better detection performance. Fig. shows example detection statistics for
both hypotheses (obtained from 50 different fingerprints). We used images from Canon EOS-40D (instead of D90 used at the
CNN training time) and sampled 300 patches for each simulated camera (note that we keep the same ISP and change only the
sRGB conversion tables). We set the embedding strength (o = 0.004) outside of the denoiser training range to match typical
real-world response strength [81]]. The experiment was performed on 128 x 128 px patches compressed with JPEG QF=90. As
expected, we see consistent improvement across various metrics (accuracy and true positive rate at 1% false positive rate). We
also show detection statistics for the ground truth fingerprint (co images) which shows that there is still space for improvement
even w.r.t. 150 images. Fig. [B.3] summarizes this behavior for various JPEG quality factors. Detection metrics saturate more
quickly than fingerprint correlation and 50-100 images are typically sufficient (depending on compression settings).

C. Performance on Real PRNU and libJPEG

We ran additional experiments to assess model generalization to real-world PRNU. We sampled 150 central 128 x 128 crops
for 33 cameras from the natural image subset of the Vision dataset [83|]. The images were split into 50 images for PRNU
estimation and 100 for detection assessment. We repeated the experiment 50 times - each time with a different estimation-
testing split. We compare 3 methods: (1) standard DWT denoising with Wiener filtering, (2) DWT denoising without Wiener
filtering, (3) our CNN model trained on synthetic PRNU. Fig. shows the obtained results for images compressed with
libJPEG QF=90 (different quality factors and estimation-testing splits show analogous behavior).

An aggregated assessment on the entire dataset (1st col.) reveals that: (1) the commonly used Wiener filter deteriorates
detection performance, (2) our CNN yields slight improvement over both baselines. Per-camera histogram (2nd col.) shows
significant improvement of the CNN for a few cameras and similar results for the rest (without the Wiener filter). To shed some

8We used the open source Python implementation from Politecnico di Milano (https://github.com/polimi-ispl/prnu-python), but adapted it to include multiple
engines: https://github.com/pkorus/prnulib


https://github.com/polimi-ispl/prnu-python
https://github.com/pkorus/prnulib
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light on these cases, we show ROC curves for the worst, intermediate (25th and 75th percentiles) and best CNN performance
(col. 3-6).

We can conclude that simulation of sensor fingerprints may be a useful tool for pre-training CNN denoisers which can
translate into benefits for real devices. Interestingly, the top 4 cameras with the largest benefit from the CNN were made by
Samsung (D01, D08, D22 and D26) and the bottom 5 by Apple (D05, D18, D20, D34 and D09). A full breakdown is shown
in Tab. [B.1] Further exploration of model architectures and training protocols could potentially leads to better results. We leave
this problem for future work.
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Fig. B.4. Sensor fingerprint (PRNU) detection performance for 33 real-world devices from the Vision dataset: our CNN denoiser trained on synthetic examples
generalizes and yields an improvement over the standard DWT-based estimator - the improvement is incremental on average and substantial for some devices.

TABLE B.1
DEVICE BREAKDOWN OF REAL-WORLD PRNU DETECTION PERFORMANCE. TPR IS MEASURED AT A FIXED 1% FPR SETTING

CNN (no Wiener) DWT (Wiener) DWT (no Wiener) CNN vs DWT
Camera do AUC TPR-1 do AUC TPR-1 do AUC TPR-1 AAUC  ATPR-1
DO05_Apple_iPhoneSc 0.026  0.867 0.427 0.022 0.878 0.470 0.024  0.887 0.510 223%  -19.54%
D18_Apple_iPhone5c 0.028  0.869 0.517 0.023  0.868 0.509 0.025 0.884 0.544 -1.77% -5.34%
D20_Apple_iPadMini 0.025 0.828 0.465 0.019 0.828 0.449 0.020 0.838 0.484 -1.17% -4.13%
D34_Apple_iPhone5 0.031  0.905 0.560 0.025 0.905 0.570 0.027 0914 0.616 -1.01% -9.99%
DO09_Apple_iPhone4 0.067  0.988 0.888 0.056  0.993 0.915 0.060  0.995 0.934 -0.78% -5.13%
D04_LG_D290 0.036  0.942 0.690 0.025 0.942 0.620 0.027  0.949 0.668 -0.76% 3.07%
D27_Samsung_GalaxyS5 0.053  0.987 0.849 0.038  0.984 0.848 0.042  0.992 0914 -0.51% -7.58%
D32_OnePlus_A3003 0.041 0.838 0.592 0.022 0.832 0.515 0.026  0.842 0.563 -0.44% 4.96%
D31_Samsung_GalaxyS4Mini 0.035 0.939 0.623 0.023  0.930 0.541 0.026 0.943 0.636 -0.36% -2.09%
D12_Sony_XperiaZ1Compact 0.067 0.972 0.895 0.049 0973 0.863 0.054 0.975 0.882 -0.30% 1.45%
D14_Apple_iPhone5c 0.044  0.947 0.690 0.031 0.941 0.649 0.033  0.950 0.689 -0.26% 0.09%
D29_Apple_iPhone5 0.055 0.983 0.824 0.035 0.975 0.767 0.039  0.986 0.823 -0.26% 0.10%
D15_Apple_iPhone6 0.047  0.992 0.883 0.040 0991 0.877 0.043  0.994 0.910 -0.20% -3.10%
D17_Microsoft_Lumia640LTE 0.038  0.970 0.803 0.031  0.969 0.770 0.031 0971 0.791 -0.09% 1.54%
D19_Apple_iPhone6Plus 0.063  0.989 0.903 0.042  0.982 0.847 0.047  0.989 0.898 -0.05% 0.58%
DO07_Lenovo_P70A 0.124  1.000 0.990 0.066  0.998 0.973 0.077  0.999 0.982 0.09% 0.85%
D21_Wiko_Ridge4G 0.063  0.988 0.907 0.036  0.979 0.818 0.043  0.986 0.881 0.20% 2.80%
D24_Xiaomi_RedmiNote3 0.076  0.995 0.929 0.057 0.991 0.918 0.060  0.992 0.926 0.22% 0.28%
D10_Apple_iPhone4s 0.016 0.818 0.279 0.013  0.808 0.258 0.013 0.815 0.290 0.27% -4.24%
D11_Samsung_GalaxyS3 0.052 0.972 0.815 0.032  0.961 0.725 0.035 0.968 0.768 0.39% 5.69%
D23_Asus_Zenfone2Laser 0.091 0.998 0.977 0.063  0.993 0.958 0.069  0.994 0.973 0.48% 0.41%
D30_Huawei_Honor5c 0.050 0.971 0.729 0.031  0.956 0.621 0.036  0.966 0.668 0.54% 8.39%
DO02_Apple_iPhone4s 0.033  0.908 0.422 0.021  0.886 0.469 0.023  0.903 0.511 0.60%  -21.24%
D35_Samsung_GalaxyTabA 0.027  0.890 0.516 0.022 0.875 0.506 0.024  0.883 0.554 0.81% -7.49%
D16_Huawei_P9Lite 0.056  0.937 0.667 0.037 0915 0.636 0.042  0.925 0.666 1.35% 0.09%
DO03_Huawei_P9 0.040 0.942 0.530 0.016 0.851 0.205 0.024 0921 0.424 2.20% 19.97%
D13_Apple_iPad2 0.012  0.760 0.148 0.008  0.727 0.124 0.008  0.735 0.144 331% 2.70%
D25_OnePlus_A3000 0.015 0.751 0.289 0.007  0.707 0.166 0.008 0.723 0.211 3.67% 27.11%
D28_Huawei_P8 0.011 0.717 0.096 0.006  0.658 0.060 0.007  0.690 0.085 3.74% 10.88%
DO01_Samsung_GalaxyS3Mini 0.019 0.828 0.347 0.010 0.764 0.181 0.011 0.773 0.203 6.60% 41.35%
D22_Samsung_GalaxyTrendPlus  0.020  0.823 0.387 0.010 0.756 0.173 0.011  0.769 0.201 6.67% 48.11%
D08_Samsung_GalaxyTab3 0.018 0.815 0.335 0.006  0.689 0.086 0.007  0.705 0.101 13.55% 69.70%
D26_Samsung_GalaxyS3Mini 0.014 0.808 0.258 0.006 0.684 0.091 0.007  0.696 0.114 13.92% 55.93%

Average 0.042  0.907 0.613 0.028  0.884 0.551 0.031  0.896 0.593 1.47% 6.55%




TABLE C.1
SUMMARY OF THE DATASETS USED IN OUR STUDY
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Camera(s) Source Resolution Bayer  Used for # images
Nikon D90 RAISE dataset [79] 12 Mpx GBRG  Framework validation, Training CNN denoiser, Synthetic 150
PRNU experiments, CSF training and validation
Canon EOS-40D MIT 5k dataset [80] 10 Mpx RGGB  Framework validation, Synthetic PRNU experiments 150
Mixed natural images  Various sources [28]  256x256 px - Demosaicing training and validation 8,192 + 500
33 cameras Vision dataset [83] 128x 128 px - Real-world PRNU experiments 150%33
APPENDIX C

ADDITIONAL MATERIALS

Summary of datasets used in this study (Tab. [C.I)),

Network architectures for the considered encoder and detector models (Fig. [C.1)),

More examples of the learned embedding distortion at various quality levels (Fig. [C.2)),
Mlustration of different variations of possible spoofing threat models (Fig. [C.3).
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Fig. C.1. NN architectures of the sensor and detector. Trainable layers are shown in color: convolutional (blue) and fully connected (violet).

(c) end-to-end detector
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Fig. C.2. Example images with an embedded fingerprint (2nd row) and isolated embedding distortion. Rows 3-4 compare the distortion for two random
fingerprints. Successive columns compare changes with image content. The fingerprint remains imperceptible despite delivering good detection performance.
Each subplot (a-d) corresponds to a different CSF system (correlation or end-to-end) trained at a various quality levels (c).
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Fig. C.3. Illustration of various attack vectors and threat models for the CSF system: an exposed authentication service has exclusive access to a secret
fingerprint and can be fed adversarial images as input. Adversarial images can be generated (Phase II) using various techniques (residual transfer, gradient
descent or approximate embedding). The process typically requires an estimate of the secret fingerprint, which can be obtained (Phase I) from image residuals,
gradients of the detector or gradients of the encoder and the camera ISP. Variants available to the attacker depend on the assumed threat model.
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