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Abstract—In this study, we address the problem of forensic
photo carving, which serves as one of the key sources of digital
evidence in modern law enforcement. We propose efficient algo-
rithms for assembling meaningful photographs from orphaned
photo fragments, carved without access to file headers, meta-
data or compression settings. The addressed problem raises a
novel variant of a jigsaw puzzle with unknown number of mixed
images, missing pieces, and severe brightness and colorization
artifacts. We construct an efficient compatibility metric for
matching puzzle pieces, and a corresponding image stitching
procedure which allow to mitigate these artifacts. To facilitate
photo assembly, we perform forensic analysis of the fragments to
provide clues about their location within the frame of the imaging
sensor. The proposed algorithm formulates the assembly problem
as finding non-overlapping sets in an interval graph spanned over
the input fragments. The algorithm exhibits lower computational
complexity compared with a popular puzzle solving approach
based on minimal spanning trees.

I. INTRODUCTION

As the number of digital devices in use continues to in-
crease, law enforcement agencies struggle to keep up with the
growing demand for forensic analysis of seized units. In cases
where the file system information is missing or corrupted,
evidence recovery involves a process known as file carv-
ing [l [2]]. Carving techniques are also increasingly adopted to
volatile memory forensics [3 4] to recover meaningful pieces
of digital objects [5]. Recently researchers have demonstrated
impressive tools for extracting widgets from graphical user in-
terfaces in Android applications [6], or for carving uncaptured
photographs from volatile memory buffers [[7].

This paper focuses on carving digital photographs, which
grows in significance due to exponentially increasing number
of camera-enabled devices (e.g., smart-phones, smart door-
bells, child monitors, smart refrigerators). Such devices per-
form frequent storage and deletion of captured photos in their
flash memory, which increases the likelihood that forensic
analysis will run into deleted, incomplete and highly frag-
mented data. Conventional carving software relies on known
signatures of file headers and footers to identify digital images
without access to file-system’s meta-data. Such techniques
often prove unreliable when dealing with fragmented files, es-
pecially when pieces are missing. The problem is particularly
important for solid state drives (used in mobile devices and
increasingly adopted in personal computers) which introduce
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additional address space randomization to alleviate memory
cell wear [8]]. The goal of our work is to enable extraction of
reliable evidence in such challenging scenarios. In sensitive,
high-profile cases like child sexual abuse investigations, every
shred of evidence can make a difference.

In Fig. [Ta] we have illustrated existing and the considered
sources of photographic evidence that can be obtained via
photo carving. We distinguish three levels of difficulty: (DI)
continuously stored images for which file headers/footers
can be identified; (D2) fragmented images for which file
header (and possibly footer) can be identified and individual
fragments are stored at progressively growing addresses; (D3)
orphaned fragments of images extracted without file headers.
The former case is trivial and can be handled by any file
carving software. The second case can be handled by state-
of-the-art photo carvers and requires sophisticated algorithms
for efficient handling of file fragmentation. To the best of our
knowledge, only two software packages currently deliver this
functionality: (1) the well established Adroit Photo Forensics
which uses a smart-carving technology based on sequential
hypothesis testing [9]; and (2) the recent JPGCarve which
includes improvements to limit the search space and enhance
detection of fragment discontinuities [[10]. However, even these
tools cannot handle missing fragments (they stop at the first
discontinuity).

Orphaned photo fragments (D3) constitute a novel source
of evidence that is currently untapped by any photo carving
software. Such fragments are carved without access to file
headers, which contains important information both about data
organization within the bit-stream (e.g., color sub-sampling)
and about the raw content itself (e.g., quantization matrices).
Without this knowledge, carving was considered infeasible. In
a recent paper, Uzun et al. [11] have demonstrated a proof-
of-concept prototype for orphaned photo carving. The authors
have analyzed a large corpus of image meta-data and collected
statistics about the most frequently used compression settings.
This information is then used for repeated content reconstruc-
tion attempts, followed by sanity checks based on the expected
appearance of natural images. The extracted fragments are
characterized by colorization and brightness artifacts, cyclic
shifts along image width, and occasional damaged blocks at
the beginning/end of the data segments (see Fig. [Ib).

While extraction of orphaned fragments is an important
step forward, it does not by itself represent a reliable and
convenient form of evidence. Manual analysis of the fragments
and their assembly into comprehensible images is prohibitively
time-consuming. While the problem bears resemblance to
jigsaw puzzle solvers considered in computer vision, there are
important differences which prevent their direct application.
The considered jigsaw puzzle is one of the most challenging
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variants reported in the literature. The puzzle contains a
mixture of fragments from multiple images, whose number is
unknown, and whose pieces are potentially missing. Moreover,
the fragments suffer from colorization and brightness artifacts.

Our goal is to address these problems, and propose effective
algorithms for assembling useful evidence from orphaned
photo fragments. To facilitate the assembly process, we exploit
additional clues about the fragments that stem from their
forensic analysis. Specifically, we consider analysis of photo-
response non-uniformity (PRNU) which allows to precisely
locate the fragments within the original frame of the imaging
sensor. Such analysis requires a precomputed fingerprint of
the camera, which is available or can be obtained in several
important forensic scenarios and can also be estimated from
full images extracted by existing carvers (difficulty levels D1
and D2). This idea builds upon recent preliminary work, where
a simple greedy heuristic assembler was considered for a

less challenging variant of the problem [12]]. The previous
study did not allow for flexible control of assembling trade
offs and ignored brightness and colorization artifacts. It relied
on a histogram-based compatibility function, which does not
allow for efficient artifact compensation. Hence, in real-world
conditions it will deliver sub-optimal performance.

The proposed algorithm is based on an interval graph
formulation of the assembly problem. To the best of our
knowledge, this is the first use of such an approach for
the problem at hand. While the developed algorithm is still
greedy, it does not require global knowledge about the sim-
ilarity of individual pieces. Compatibility relations between
fragments are computed only when needed, which leads to
significantly lower computational complexity compared with
popular greedy approaches discussed in the literature - even
when taking into account problem-specific optimizations.

The main contributions of our work include:



1) proposition of a novel variant of the jigsaw puzzle
problem with direct applicability in forensic science;

2) construction of an effective solution for dealing with
colorization and brightness artifacts in orphaned photo
fragments;

3) proposition of a novel algorithm for image assembly
based on interval graphs;

4) adoption of forensic analysis of image fragments to
deliver additional information about the puzzle;

5) experimental evaluation of the proposed approach on a
large corpus of simulated carved fragments.

The paper is organized as follows. Section |ll| reviews related
work and briefly introduces fundamental concepts. Section
formally formulates the problem, and describes the proposed
solution. Section [IV] presents experimental evaluation result.
Finally, we conclude and discuss the perspectives for future
research in Section [VIl The source code for our method will
be shared with the research community on request.

II. BACKGROUND AND RELATED WORK

In this section, we review related work in forensic photo
carving and assembling jigsaw puzzles. In particular, we focus
on the most recent technique for carving orphaned photo frag-
ments. We also briefly introduce the fundamentals of interval
graph theory and forensic analysis of sensor pattern noise,
which are the building blocks of the considered approach.

A. Forensic Photo Carving

Without data fragmentation, carving digital photographs
can be effective with general techniques based on known
header/footer signatures. However, fragmentation occurs not
only for deleted files, but also naturally due to file-system
design. Dealing with fragmented images requires in-depth
knowledge of both the storage format’s syntax and the ex-
pected image statistics. For more information about the chal-
lenges and the adopted techniques, the readers are referred to
a survey paper [2.

a) Fragmented Photographs: One of the first effective
techniques was proposed by Garfinkel [13] and allowed to
deal with bi-fragmented JPEG images. After identifying the
header and the footer, the method attempts to decode the data
in between by excluding a variable size gap in the middle.
Successful carving of heavily fragmented photos was enabled
by Memon et al. [14] who considered each fragment as a
node in a fully connected graph, and formulated the problem
as finding k-disjoint shortest paths. The edges were weighted
based on fragment similarity. Full connectivity of the graph
led to poor computational scalability of the algorithm.

The above limitations were addressed by Pal et al. [9]
who proposed to perform sequential hypothesis testing to
detect fragmentation points and then search subsequent data
blocks for the next fragment. The process continues until
completion (footer is reached) or failure (maximal number
of steps is exceeded). The technology has been marketed as
smart carving and is featured in the popular commercial photo
carving software - Adroit Photo Forensics. Adroit represents
the current state-of-the-art in commercially available solutions.

A recent JPGCarve system [10] improves upon the perfor-
mance of smart carving. The process starts by automatic detec-
tion of file-system cluster size, followed by removal of clusters
without correctly detectable photo fragments. Comparison of
visual content features allows to match adjacent fragment.
While the method allows to deal with data fragmentation,
successive pieces of the photo need to occur in the original
order. A valid header is still required for each carved photo.
The JPEG header defines important properties of the bit-stream
syntax (e.g., color sub-sampling) and the content itself (e.g.,
quantization tables).

b) Orphaned Photo Fragments: Successful carving of
individual photo fragments without access to the file header
has recently been demonstrated by Uzun et al. [11]. The
authors examined a large corpus of JPEG images downloaded
from Flickr to identify the most common compression settings.
The carver uses this information to guess the compression
parameters and attempt fragment decoding. Upon successful
decoding the content is also validated against the expected
natural image statistics.

While the ability to carve orphaned photo fragments is an
important step forward, the fragments themselves do not yet
represent useful evidence. They need to be first re-assembled
into meaningful images, which is excessively time-consuming
for humans and constitutes an open research problem. The
process is further complicated by visual artifacts in the recov-
ered fragments. Due to missing information about the image
structure and content context (quantization tables, brightness
offsets), the fragments exhibit colorization and brightness
artifacts, and may be cyclically shifted along image width.
Moreover, truncated bit-stream may lead to minor decoding
errors at the beginning/end of the fragments (occasionally
manifested by a few damaged blocks). Visual impact of these
artifacts can be observed in example carved fragments in

Fig. [Tbl

B. Jigsaw Puzzles

Assembling images from shuffled fragments is a well known
problem in computer vision, referred to as the jigsaw puzzle
problem. Several variants of the puzzle have been considered
including assembling irregular, shredded [15} |16] and regular,
square fragments [[17H19]]. The former is known to be easier
since irregular shape boundaries limit the space of compatible
candidates. Other variations include mixed puzzles with sev-
eral images [20] (with or without knowledge about the number
of images in the mixture), missing pieces [18], or constraints
on fragment location or orientation [20].

In general, puzzle solvers involve two main components:
(1) a compatibility function for measuring match quality
between a pair of fragments; (2) an assembly procedure
which groups and stitches the fragments together. Except for
shape constraints, compatibility functions typically rely on
pixel intensity differences along fragment boundaries and use
various p-norms to measure the distance either in the RGB or
Lab color spaces [17]. Some approaches predict continuation
of the fragment boundary either using inpainting [21] or
row differences [[17, [L8]. It may also be beneficial to match
gradients instead of pixel intensities [20].



The jigsaw puzzle problem is known to be NP complete, so
all solvers adopt greedy approximation strategies. The most
popular approach involves computation of minimal spanning
trees in the constructed fragment graph [[15} [16} 20]. The algo-
rithms also differ in their choice of the first placed piece, which
may be random or deterministic [[18]. The puzzle may also
be formulated in terms of dynamic programming [22]] which
simultaneously finds multiple good matches using a well-
known Hungarian optimal assignment procedure. The problem
can also be approached as a probabilistic graphical model,
where the globally optimal configuration of the pieces can be
efficiently approximated using loopy belief propagation [23]].

C. Analysis of Sensor Pattern Noise

To facilitate the assembly process, we exploit additional
information about the image fragments that can be obtained
from their forensic analysis. Specifically, we resort to anal-
ysis of sensor pattern noise, which characterizes behavior of
individual pixels of imaging sensors used in digital cameras.
Such analysis allows us to precisely recover spatial locations
of the fragments. As a result, we are able to detect overlaps
and order the fragments according to their spatial location,
which imposes a regular structure upon the problem which
can be exploited to speed-up computations (see Section [§).

Analysis of sensor pattern noise relies on intrinsic imper-
fections of the sensor which manifest themselves as consistent
sensitivity bias of individual pixels. This behavior is unique to
each sensor and is stable over time. While this phenomenon
is practically imperceptible, it can be detected with statistical
methods [24-26]. The problem has been widely studied in dig-
ital image forensics literature, and relies on a simplified image
acquisition model, where a digital photograph is modeled as:

I=19 4 10X 44, (1)

where 1(9) denotes a hypothetical noise-free image, X is
the estimated photo response non-uniformity (PRNU) noise
that represents the camera fingerprint, and 1) combines the
remaining sources of noise, e.g., readout noise, dark current,
or shot noise. The sensor fingerprint is estimated by averaging
noise residuals obtained by subtracting denoised versions of
the images.

The fingerprint can be used for attribution and authentica-
tion problems, which involve confirmation of the acquisition
device or the authenticity of a photo. Verification involves
correlation of the investigated image’s noise residual with the
PRNU fingerprint of the sensor. Brute-force search allows
to recover synchronization between the signals which may
be necessary for re-sampled or cropped images. The process
automatically recovers the original spatial location of the
investigated image (or its fragment).

D. Fundamentals of Interval Graphs

Interval graphs have been extensively used for resource allo-
cation problems in operations research and scheduling theory.
In this section, we briefly introduce fundamental definitions
and concepts to make the paper self-contained.
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Fig. 2. Example intervals and the corresponding interval graph: {va, ve} is
an example maximal independent set. {v1,v4,v7} is an example maximum
independent set.

a) Basic Definitions: Let [ = {I1,1s,...,1I,} be closed
intervals on the real line R. Then, an interval graph Gy
corresponding to the interval family [ can be defined as
Gr = (V,E) where V = {v1,v2,...,v,} and E = {(v;,v;) :
IrNI; #0}. Two intervals I; and I}, are independent if they
do not intersect (see Fig. [2); otherwise they are considered
adjacent to each other.

A set of intervals S is an independent set if all intervals in .S
are independent of each other. If there is no proper superset of
S which is also an independent set, then S is called a maximal
independent set. If the cardinality of a maximal independent
set S is the largest among all independent sets, then it is called
a maximum independent set (see Fig. [2).

A set of intervals {I1, Io, ..., I, } is in canonical form if the
beginning and ending locations of the intervals are distinct
integers between 1 and 2n and no two intervals have endpoints
at the same locations. The general and the canonical forms
share the same set of dependencies and as a result correspond
to the same interval graph (see Fig. [2).

b) Finding Maximal Independent Sets: Masuda et al. [27]
proposed an algorithm for enumerating all maximal inde-
pendent sets of an interval graph. The method operates on
canonical-form intervals and then constructs a directed graphs
whose depth-first-like traversal corresponds to enumeration
of the maximal independent sets. Conversion of intervals
into their canonical form involves sorting the endpoints and
remapping them to integers while preserving overlap relations.

The algorithm scans successive coordinates ¢ = 1,...,2n
and progressively constructs a graph. Let G; = (V;, E;) denote
temporary graphs for successive coordinates ¢ = 1,2,...,2n.

The vertex sets V; consists of a dummy parent node vy and
nodes v; corresponding to intervals I; with starting locations
< . The algorithms tracks which intervals are immediate
predecessors of the current coordinate ¢, and keeps the cor-
responding vertices in a precede set P;, e.g., Py = {va,v3}
in Fig. [2b] (v; is not included since it is not an immediate



Algorithm 1 Pseudo-code for directed graph creation.
Input: {I;}
Vo + {vo}, Eo + {0}, Go < (Vo, Eo)
P+ {vo}
fori«+1,...,2n do
I; < interval starting/ending at ¢
if 7 is the start of I; then
Create a new vertex v;
Vi« Vi1 U{w;}
Ei < Ei—l U {(.’E — w])\x c ,Pz}
Gi < (Vi, Ei)
Pit1 + Pi
end if
if 7 is the end of I; then
G+ G
l < start coordinate for I;
Pit1 = (Pi =Pu) U{w;}
end if
end for
return Ga,

predecessor, due to the I3 in between).

Each processing step depends on whether the current lo-
cation corresponds to a start or an end of an interval. Upon
interval start, a new vertex v; is created (corresponding to
interval I;), and directed edges are added from each vertex in
P; to v;. Upon interval end, v; is added to the precede set
‘P;, and the precede set is pruned of nodes whose intervals’
ending locations are before the starting location of I;. Finally,
maximal independent sets are enumerated by depth-first-like
traversal from vy to the vertices in Ps,41 in the last graph
Gan,.

III. FRAGMENT ASSEMBLING METHODS

This section introduces the proposed orphaned fragment
assembling method based on an interval graph formulation. We
also describe a baseline method inspired by existing spanning-
tree-based jigsaw puzzle solvers. In either case, the considered
fragment assemblers operate in three main steps:

1) Finding vertical positions for all of the fragments based
on forensic analysis of sensor pattern noise;

2) Clustering the fragments into separate images based on
pairwise fragment compatibility;

3) Stitching the fragments within each cluster along with
joint color and brightness normalization.

The interval-graph and spanning-tree assemblers share the
same fragment compatibility measure and differ only in the
adopted clustering procedure. Both methods incorporate a
compatibility threshold T which allows to control the desired
matching precision and to trade-off result quality for the
number of clusters.

Finding the best clustering of the input fragments can
be formulated as an optimization problem which involves
placing edges between nodes in a graph spanned over the
fragments. The edges should be placed to maximize fragment

compatibility:
argglax Z C(F;, Fj) (2a)
(i,j)eE
S.t. vi,j C(F“F]) >T (2b)
V: {(z,y) e E:x=1i}| <1 (2¢)
Vi {(z,y) e By =i}[ <1 (2d)

where C denotes the compatibility function assuming values in
RU{—00} (=0 is used for forbidden connections, e.g., among
overlapping fragments). The last two conditions correspond to
limits on the in/out degrees of the nodes, and ensure that each
vertex can have at most two neighbors (at the top and at the
bottom, respectively). The final labeling of the nodes can be
obtained by enumerating connected components in the graph.

A. Input and Pre-precessing

The input to the assembler is an unordered and mixed set
of orphaned photo fragments {F;} (see Fig. , carved from
damaged JPEG photographs using the tool developed by Uzun
and Sencar [11]. The fragments are always of the same width
(full width of the original image) but vary in height (depending
on the size of recoverable data chunks). The fragments can also
significantly differ in color and brightness - even in case of
direct neighbors. Minor artifacts can also be expected at the
beginning/end of the data blocks.

The number of images in the mixture is unknown. Although
in general the number of cameras in the mixture is also
unknown, we assume that only one camera is involved. To
enforce this assumption, the input fragments can be divided
into separate groups based on their width and the camera
fingerprint match (see Section [[I-C). In addition to the frag-
ments, our algorithm also requires the PRNU fingerprint of
the camera. A high-quality fingerprint can be easily estimated
from new photographs if the camera is available. Alternatively,
it can also be estimated from existing photos or even from
full-size photographs carved by any of the existing tools.
Several efficient algorithms exist for blind clustering of large
photo collections and joint estimation of their cameras’ fin-
gerprints [28].

The main goal of the initial forensic analysis is to determine
vertical locations of the fragments. This is performed by brute-
force search over all possible locations and correlation of
the PRNU fingerprint with noise residuals of the investigated
fragments. The search needs to be performed only along the
vertical dimension, allowing for rapid computation using stan-
dard convolution routines. Comparison of the peak correlation
with a threshold allows to detect incorrectly decoded fragments
and either discard or correct them (e.g., by reversing cyclic
shift along the image width). In our experiments, we used
the peak to correlation energy (PCE) metric, known for better
stability of the correlation measurements [29]].

B. Interval Graph Assembler

The proposed assembler treats each image fragment as
an interval with beginning/ending locations recovered as a
result of sensor pattern noise analysis (see Fig. [3). To solve
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Fig. 3. Carved photo fragments as intervals. Beginning and ending locations
are obtained from forensic analysis of sensor pattern noise.

the optimization problem [2] we have implemented a greedy
algorithm inspired by Masuda’s procedure for enumerating
independent sets in an interval graph (Section [[I-D). Each
identified independent set corresponds to an image, which
guarantees that overlapping fragments will not be clustered
together and allows to quickly find a good approximation of
the optimal clustering.

At first, the input fragments are sorted by vertical loca-
tion and converted into canonical-form intervals. Then, the
algorithm scans successive coordinates ¢ = 1,...,2n and
constructs a directed graph by matching compatible fragments.
Upon start of a new interval, a new vertex v; is added to the
graph. Initially, the algorithm tries to match the new fragment
to its immediate predecessors (tracked within precede sets P;).
For each candidate vertex in the precede set P;, the algorithm
computes the compatibility function and the best match is
chosen. The matching process may involve breaking existing
parent-child relations if the new vertex would constitute a
better match. In such a case, the child is detached and moved
to a compatible predecessor (from its corresponding precede
set) or used to start a new cluster.

If none of the immediate predecessors of v; constitutes a
good match, the algorithm starts checking earlier ancestors.
To limit computational complexity, the first acceptable match
is used and only a fraction of available candidates is checked.
Again, if the match would improve upon existing parent-child
relations, the child is detached and used to start a new cluster.
Finally, this procedure yields a graph where independent sets
form unconnected chains. The flowchart of the algorithm is
shown in Fig [

C. Spanning Tree Assembler

As a baseline algorithm we consider a minimal spanning-
tree approach which was commonly used in earlier jigsaw puz-
zle solvers 20]). Our assembler adopts the Kruskal’s
algorithm [30] which performs greedy fragment stitching with
the best available pair (above a certain affinity threshold 7).
The algorithm begins with each fragment in a separate tree,

Algorithm 2 The spanning tree assembler.

Input: {F;}
Input: 7
Input: LUT
C C({Fl, Fj}, LUT)
T + sort(C)
L+ [1,...,N]
k<0
while true do
k+—k+1
(i.4) + i
if Az] S T then
break
end if
L+ L
l¢ < min(Ly, L;)
ls < max(L;, L)
if [ = I+ then
continue
end if
{En : [:n = ls} < lt
M<+—{n:Ly =1}
if [{(z,y) € M x M : Cyy = —oc}| > 0 then
L+ L
continue
end if
end while
return L

and then progressively merges the trees (overlapping candidate
fragments are simply skipped). In the process, labels are
swapped for the smaller available one, which guarantees that
the output labels simply enumerate the identified images. The
algorithm is summarized as Algorithm

D. Fragment Affinity Measures

Designing an efficient compatibility measure is a key
problem in image re-assembly. As already discussed in Sec-
tion[[[-B] the most popular and already very effective approach
involves a simple L, norm of pixel differences along the
boundaries between the fragments (computed either in the
RGB or the Lab color space) [17]. Such an approach is
not directly applicable due to the artifacts in the carved
fragments (see Section and Fig. [T). Missing pieces also
make it impractical to consider more advanced measures like
gradient compatibility [20] or differences of predicted content
continuation beyond the fragment boundary [17]]. Hence, a new
metric is needed.

Computation of fragment compatibility relations is the most
time-consuming operation in the whole assembly process. As
a result, to minimize computational complexity, we resort to a
compensated variant of the Ly norm. Specifically, we compute
the compatibility between fragments F; and I as follows:

—00 if I; and F}; overlap,

C(F,F;)=Cy = .
( 3) / {log (%) otherwise.
—¢.,

where C; ; € [0, 1] represents the probability that the fragments
originate from the same image. We estimate this probability
from pixel differences D;; (formally defined later in the text)
given the spatial distance S;; between the two fragments. For
each spatial distance S;;, we obtained empirical probability
distributions p(d|Hy, S;;) and p(d|H;) which correspond to
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fragments obtained from the same image (hypothesis Hy) or
from different images (hypothesis H7). The obtained distribu-
tions for selected distances S;; € {1,64,128,512} [px] are
shown in Fig. 5] Then, given the corresponding cumulative
distributions P(d|Ho, S;;) and P(d|H;), we compute:

P(D;;|Ho, Si,;)
P(D;;|Ho, S; j) + P(Dij|Hy)

which represents preference for treating fragments F; and
F; as originating from the same image. Exploitation of
prior knowledge on typical pixel distributions allows to au-
tomatically discount false positive matches for distant frag-
ments, which occasionally could take precedence between
closer fragments. For the sake of computational efficiency,
we implemented the above relationship as a lookup table
(Dij, Sij) — Ci;. In our study, we considered 256 possible
values for D;; and 128 values for S;; (distance was measured
in 8 px increments). We obtained the lookup tables from
original image fragments. In order to compensate for the
loss of contrast in carved fragments, the pixel distance can
be multiplied by a constant factor (in our experiments, we
used a multiplier of 4 based on empirical comparison of pixel
statistics).

Pixel differences D;; are computed from the corresponding
top/bottom rows of the fragments, depending on their spatial
arrangement. We assume all fragments originate from images
of the same size (N, N, 3). Let I:®) and IUY) be arrays
of size N,, X 3 denoting the bottom and top margins of the
top and bottom fragments, F; and F); respectively (in case of

éij =

3)

All compatabilities

Create new cluster

between vertex
and child

Select most
s | compatible vertex

|

Selected vertex
has a child ?

< 7?

Compatible
vertex found?

yes

reverse spatial ordering the top/bottom row selection needs to
be reversed as well). For the sake of notation simplicity, we
will refer to them in short as I(®) and I®), Then, without color
compensation, we could compute D;; as:

Ny

Z i ](b) ](t)

Dij = 1 =19, =

For better stability across various image sizes, the summa-
tion is normalized by 3V,,. Such a metric efficiently identifies
fragments originating from the same images assuming that
no differences in color and brightness are observed (Fig. [Gh).
However, in orphaned fragments even directly adjacent frag-
ments can significantly differ both in brightness and in color
(Fig.[I) which significantly deteriorates detection performance
(Fig. [6b).

Color and brightness correction for a pair of fragments F;
and F; can be implemented by finding offsets a;,a; € R3,
where each component «;. corresponds to a channel of the
image (in principle Y, Cb, Cr in JPEG representation, although
the correction works equally well in the RGB color space):

W=+ a) - @

While for actual color and brightness correction it remains
important to find both o;; and «; (see Section for details),
for computation of minimum D;; it suffices to consider a
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Fig. 5. Empirical distributions of Lo distances for different-image and same-
image fragments separated by three example distances (1, 33, and 513 px).

single offset o € R3:

N, 3 9
argml Z Z ( I 18 +a ) . &)

A solution to this equation can be obtained by equating its
gradient to 0, which yields:

ZI =I5 ©)

The above offsets can then be used to compute min,, D;; and
the corresponding best compatibility éw

Dealing with carved image fragments requires handling
missing DCT blocks at the beginning and end of the fragments
(see Fig. [T). While exact locations where the data starts/ends
are determined by the fragment carver, we assume such infor-
mation is not available to the re-assembly module and estimate
it directly from pixel values. Then, the margins are extracted
along the last known valid pixels (both top and bottom margins
for each fragment). The shape of the resulting puzzle cannot
be used for an exact match, because additional data may
be missing or its header/tail may be damaged. However, we
consider this shape information to eliminate obvious overlaps
between neighboring fragments.

E. Color and Brightness Correction

Color and brightness correction of multiple orphaned frag-
ments relies on similar principles as discussed in Section [[lI-D]
However, it is necessary to consider separate offsets for each
of the fragments, and the optimization problem (@) needs

to be extended to include more constraints. Let us denote
fragments assigned to a single image, and ordered according
to their vertical location as F; : i € £ = {1,...,L} and
the corresponding correction factors as «; € R3. Then, the
problem becomes:

. . 2
Oiwe = ((If,}ébuaic)f(Igjl’tWa(m)c)) . (Ta)

L-1 N, 3

@; = argmin Z Z ZO“"C .

i 2 €L i=1 w=1c=1

(7b)

We solve this system by equating its gradient to 0, which
yields the following equations, which combine the constraints
from 2 neighborhood relations:

—Qi1)e + 20 — Qgip1)e = (Iggl,b) _ Igg)) ~  (8a)
— (D~ 16 0) @by

The problem can be conveniently represented by the following
linear system (for presentation clarity, we show the solution
for a single color channel):

Ma=v, 9)
where the sought offsets are organized into a column vector:

a= (e s ap-ne o), (10)

and the matrix M considers all constraints between neighbor-
ing offsets:

1 -1 0 0 0 0

-1 2 -1 0 0 0

M = 0 -1 2 -1 ... 0 0
0 0 0 0 -1 1

The free terms are analogously obtained by summing up pixel
rows from neighboring fragments with alternating signs:

L(Ulc,b) - I&Zét)

(I&,b) _ I&t)) _ (11(1}2617) _ L(U3c,t)>

_NLZ . (1)

(16— 1)

The above problem does not have a unique solution
(det(M) = 0) so we obtain the offsets using its pseudoinverse,
ie., & = MTv. Solving for all color channels can be
performed jointly by extending the above vectors and repeating
matrix M along the diagonal of a 3L x 3L matrix. An example
result of color and brightness normalization with the above
algorithm is shown in Fig. [7| for both complete and incomplete
images.

F. Computational Complexity

The considered assembly process involves five general
steps: (1) localization of the fragments on image canvas; (2)
fragment preparation and sorting; (3) affinity computations; (4)
clustering the fragments into separate images; (5) stitching and



(a) non-compensated L, metric (original fragments)

(b) non-compensated L, metric (orphaned fragments)

(c) compensated L, metric (orphaned fragments)

P 1 Y L E——————ee |
(7 = 9% —
/ ~ [/ //
osll 1 08 08/ // .
J / /
[/ Yy
e 0.6{1/ 12 0.6 2 0.6 H Ve / R
Z / —8;; < 1 — auc: 0.997 2 ///,,/’ — S < 1— auc: 0.880 'z Yoy —8; < 1 — auc: 0.987
S04 ——85; < 80— auc: 0.994 || g 04[ 8 < 80— auc: 0.900 || o 04 / ——5; < 80 — auc: 0.982 ||
= / i < 128 — auc: 0.979 g ey i < 128 — auc: 0.870 = / i < 128 — auc: 0.952
0.2k —8j; < 256 — auc: 0.934 0.2H —Sj; < 256 — auc: 0.797 020 ij < 256 — auc: 0.875
—8;; < 512 — auc: 0.857 —85;; < 512 — auc: 0.723 —5;; < 512 — auc: 0.787
Sij < 1024 — auc: 0.783 Si < 1024 — auc: 0.674 Si; < 1024 — auc: 0.726
O L Il Il Il Il i 0 L Il Il Il Il i 0 i Il Il Il Il im|
0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
false positive rate false positive rate false positive rate
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uncompensated Lo metric on original fragments; (b) uncompensated Lo metric on carved orphaned fragments; (c) compensated Lo metric on carved orphaned

fragments.

(a) no compensation (b) with compensation

Fig. 7. Result of the considered color and brightness normalization procedure
for images re-assembled from orphaned fragments: (top) without missing
fragments; (bottom) with missing fragments.

(a) overlapping fragments (b) perfect matches

Fig. 8. Structure of the compatibility matrix showing the probability of each
(4, 7) location being: (a) a pair of overlapping fragments; (b) a perfect match.

color and brightness normalization. The most time consuming
operations are (1) and (3) which have linear and quadratic
complexity, respectively. As a result, computation of fragment
affinities is the main bottleneck.

The spanning tree assembler is a greedy algorithm which
requires knowledge of all the affinities beforehand ((n?—n)/2
entries). However, availability of fragment localization in-
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Fig. 9. Fraction of compatibility relations computed by the interval graph
assembler.

formation imposes an interesting structure upon the affinity
between the fragments. Fig. [8] shows the most probable lo-
cations of two important interactions between the fragments:
(a) overlapping fragments; (b) fragments with a perfect match
according to the affinity metric A;;. The figure was obtained
by averaging affinity matrices for various numbers of involved
images, various rates of missing fragments, and various repe-
titions of random phenomena. It can be observed that both of
these cases occur in a narrow band around the main diagonal
of the matrix. As a result, it becomes possible to severely
narrow down the range of indexes where the affinities need
to be computed. We observed that limiting the computation
to approx. 36 - 43% of all entries (20 - 25% of the edge of
the matrix) is enough and does not have negative impact on
assembly performance.

The interval graph assembler represents a different ap-
proach. While the algorithm is still greedy, it begins with the
knowledge of the first top fragment and then computes the
affinities only when needed. At first, the algorithm considers
only a small set of immediate predecessors, and continues to
consider further nodes only if an acceptable match cannot be
found. While such an approach significantly limits the amount
of necessary computations, the scalability of the algorithm
cannot be captured with a simple dependency; important
factors include the number of input fragments, the number
of images, the number of missing fragments, the decision
threshold, and distribution of compatibility values and spatial



locations of the fragments.

Fig. [9] shows the typical percentage of all compatibility
relations that were computed by the algorithm. We used
mixtures of 10, 25, 50 and 100 images and controlled the
number of input fragments by randomly removing a given
portion of them (from O to 50%). The variability stems from
various decision thresholds and random repetitions of the
experiment. It can be observed that the number of resolved
compatibilities grows together with the number of dropped
fragments, which corresponds to the lack of good matches
among immediate predecessors and a necessity to consider
more fragments (hence the discontinuities between cases with
the same number of input fragments and different fragment
dropping rates). It can also be observed that the percentage
of computed compatibilities typically remains between 10-
20%, which represents a considerable improvement over the
spanning tree approach.

IV. EXPERIMENTAL EVALUATION

This section describes the performed empirical validation.
We begin by introducing the utilized dataset and explaining the
adopted performance metrics. We then discuss the fragment
localization performance. Finally, we describe the conducted
experiments and discuss the obtained results.

A. Dataset Preparation

We used images from the RAISE dataset which contains
8,000 diverse uncompressed bitmaps acquired by 3 digital
cameras [31]]. We randomly selected a subset of 2,000 images
from one camera and converted them to JPEG with a popular
open-source library IJG. We used a single quality level (80)
and 4:2:0 chroma sub-sampling. Prior to selection, we did
not prune duplicated images (the dataset contains both exact
and near-duplicates). These images were then used for: (1)
generating simulated fragments for jigsaw reassembly (200
random images); (2) estimating the PRNU fingerprint of the
camera (200 most favorable imagesﬂ) using the MLE estimator
available at [32f]; (3) collecting pixel difference statistics
along rows separated by various distances (2,000 images);
(4) carving actual orphaned fragments with a prototype carver
obtained from the authors of [L1]] (50 random images).

Most of our experiments were performed on simulated
carved fragments which allowed us to operate on a much
larger dataset. The simulated fragments replicate the same
colorization and brightness artifacts that occur as a result of
orphaned photo carving: (1) the first DC coefficients within
all color channels were set to zero; (2) DCT coefficients
were used directly without dequantization since quantization
tables are not available in a general case; (3) first and last
rows were zeroed at random truncation locations. To obtain
a performance baseline, we also generated corresponding
versions of the fragments without color and brightness artifacts
(data truncation from step 3 was still performed).

'We used a standard correlation predictor to estimate the PRNU strength
in an image [24]. As expected, the chosen images correspond to bright, but
non-saturated, images with little texture.

To reduce algorithm runtime and storage requirements, we
evaluated assembly performance on down-sampled versions of
the images (down to 2 Mpx). Evaluation of forensic fragment
analysis and location recovery performance were performed on
actual carved fragments obtained from full resolution images.

B. Performance Measures

For each identified cluster of fragments, we determine the
identified image as the mode of ground truth image identifiers
of the included fragments (the most frequent ground truth
identifier is chosen). To measure assembly performance, we
then discard the conflicting fragments and compute: (1) the
rate of the remaining fragments rr; (2) the rate of images
from the mixture for which at least one cluster has been found
rr; (3) ratio of the number of identified clusters to the number
of images in the mixture ro. We capture the behavior of the
assemblers by considering two dependencies: rp = f(r¢)
and 1 = f(rc) which are empirically obtained by varying
the compatibility threshold 7. Such an approach reflects the
efficiency of the assemblers in trading off the number of
clusters for their purity. In both cases, ideal performance
corresponds to the point (1,1).

C. Carving and Pre-processing of Orphaned JPEG Fragments

Carving orphaned photo fragments involves guessing sev-
eral important compression parameters and hence is suscep-
tible to errors. In this experiment, we evaluate the utility
for reassembly of fragments yielded by the orphaned photo
carver [11]]. We used a research prototype shared with us by the
authors. The carver extracts photographic content of a single
fragment from a chunk of binary data.

We focus on the ability of precise fragment localization
within the sensor frame, which is crucial for our algorithm and
reflects the quality of the recovered content. We used 50 full-
resolution JPEG images, subsequently divided into fragments
by pseudo-random bit-stream truncation. We then ran the
orphaned fragment carver to extract photographic content
from the truncated bit-streams. The total number of fragments
was 1,400 and the number of fragments per image varied
between 14 and 48. 1.6% of the fragments were recovered
with incorrect image width, and were discarded from further
consideration.

We performed fragment localization by 1-dimensional
brute-force search based on the PRNU signature (for fragment
localization) and on pixel intensities (to obtain ground truth
for evaluation). Both search procedures were implemented as
cross-correlation using standard fast 2-D convolution routines.
For the sensor fingerprint, we used the PCE measure to
assess the quality of the match. We used 3 different camera
fingerprints, obtained from both uncompressed images, as well
as compressed JPEG images with quality factors 90 and 80.

We measured distances between spatial locations recovered
based on the sensor fingerprint and the pixels. Since JPEG
images are encoded based on macro-blocks (four 8 x 8 px
blocks), minor localization errors can be easily compensated.
Hence, we consider vertical localization distance below 8 px
as successful. We used PCE threshold of 7, to accept carved
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Fig. 10. Fragment assembly performance for the IG and ST assemblers: (left) recovered images r; (middle) correctly recovered fragments r; (top right)
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TABLE 1
FRAGMENT LOCALIZATION ACCURACY FOR ORPHANED PHOTO
FRAGMENTS [%].

TIFF  JPEG 90 JPEG 80
True positives 56.7 524 42.0
False positives 0.8 0.5 0.6
True negatives 31.3 35.8 45.7
False negatives 9.2 9.7 9.6

fragments. The localization success results are collected in
Table [l

Assuming a good camera fingerprint is available (uncom-
pressed and JPEG 90 fingerprints in our evaluation), > 50%
of the fragments were localized perfectly. The number of
false positives is negligible. Upon manual inspection, all cases
(0.6%) turned out to be empty or nearly flat fragments where
pixel-based localization failed leading to corrupted ground
truth data. In all cases, PRNU-based localization returned
correct locations.

Manual inspection of the true negative cases revealed cir-
cularly shifted content which prohibited a positive match.
While this distortion could be corrected by performing sensor
pattern noise validation for plausible cyclic shifts (essentially
adding an extra dimension to the search-space), we leave this
improvement for future work.

D. Image Assembly Performance

We evaluated image assembly performance on random
configurations of simulated fragments sub-selected from the
prepared dataset. In each iteration, we chose a fixed number
of images in the mixture (10, 25, 50 or 100) and then removed
a random fraction of them (uniform selection with drop rate

p €{0,0.1,...,0.5}). For both the spanning tree (ST) and the
interval graph (IG) assemblers, we swept the decision thresh-
olds to generate empirical trade-off characteristics 77(r¢) and
rr(rc). Each drop rate is represented by a different curve. All
configurations were repeated 10 times with different images
in the mixture and different selection of dropped fragments.

a) Quantitative Performance: The obtained results are
shown in Fig.[T0] The left column shows the trade-off between
the number of found images and the number of identified
clusters. The middle column shows an analogous trade-off for
the number of correctly placed fragments. The plots reveal
similar behavior with perfect assembly when all fragments
are available. As more fragments go missing, performance
gradually deteriorates. The plots show results for 100 images
in the mixture. For smaller number of images, the results are
better but reveal the same qualitative behavior. Even for cases
with missing fragments, the algorithms allow to assemble a
lot of potentially useful evidence.

For easier comparison of the ST and IG assemblers, the
right column in Fig. [I0] shows the number of correctly placed
fragments (top) and the typical runtime of the algorithms
(bottom). Both algorithms were implemented in Matlab and
used the same functions for computing fragment compatibility
(the most time-consuming part of the assembly process). The
observed variation of runtime stemmed from various compati-
bility thresholds and random selection of images/fragments in
each evaluated case.

It can be observed that the IG assembler delivers competitive
assembly performance with significantly lower runtime. The
ST assembler was evaluated in two configurations with full
evaluation of the complete affinity matrix and with only a
small number of configurations around the diagonal (see Sec-



(a) IG assembly of 10 images without color normalization

(c) IG assembly of 10 images with 50% lost fragments

(b) IG assembly of 10 images with color normalization

(d) ST assembly of 10 images with 50% lost fragments
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Evidence assembly examples for the proposed IG assembler: (a)-(b) assembly of 10 images from 103 orphaned fragments without missing pieces;

(c) assembly from 53 fragments (50% missing); (d) ST assembly of the same fragments as in (c) shown for reference.

tion [[II-F). Despite considerable improvement, the proposed
IG solver remains 2-3 times faster.

b) Qualitative Examples: Fig. [I1] shows examples of
images assembled by the proposed IG algorithm. Examples
in (a) and (b) illustrate assembly of 10 images out of 103
mixed and distorted fragments. The results are shown with-
out and with the final brightness and color normalization.
Example (c) shows the same 10 images reconstructed from
53 randomly chosen fragments. It can be observed that the
algorithm can correctly stitch fragments separated by small
holes. Despite imperfect reconstruction, the assembled images
represent meaningful content, upon which further actions
can be taken. For reference, (d) shows the corresponding
reconstruction result for the baseline ST assembler.

A large reconstruction example is shown in Fig. The
presented case included 100 images in the mixture and in-
volved: (a) 1092 orphaned fragments; (b) and (c) 636 ran-
domly selected fragments (40% missing). If all fragments
are available, it is possible to perfectly reconstruct the input
images. In case of missing fragments, holes in the images
often inhibit fragment matching. A compatibility threshold
can then be used to control the trade-off between the number
of discovered clusters and their purity. The examples in (b)
and (c) correspond to a strict and a lenient threshold for
the proposed IG assembler. The corresponding results for the
baseline ST assembler are shown in (d) and (e). For the sake
of presentation clarity, in both cases, the results are ordered
by cluster size and coherence.

c) Assembling Near Duplicates: In this experiment, we
selected a sub-set of 50 similar images, including both seman-
tically similar photos as well as near duplicates (Fig. [I3p).
We then repeated the same evaluation as before by randomly
dividing the images into fragments, simulating content distor-
tion and removing various fractions of the fragments. Just as
before, the experiment was repeated 10 times. In this case, we
evaluated only the proposed IG assembler.

The obtained quantitative results are collected in Fig. [[3p.

While the performance is slightly worse than for the general
case, our algorithm can still extract considerable amount
of useful evidence. In case all fragments are available, the
reconstruction is nearly perfect. Manual inspection revealed
only a few mistakes, which happened when the truncation
points coincided by chance and there was no visual content
to differentiate between candidate matches. In case of missing
pieces, our IG assembler is still capable of delivering use-
ful results. As an example, we’ve included top 15 images
recovered by the IG assembler from an example experiment
with fragment drop rate p = 0.4. For the sake of presentation
clarity, we have manually boosted the contrast of the images.

V. PRACTICAL APPLICABILITY

The proposed algorithm relies on digital image forensics
to facilitate JPEG photo carving in the most challenging
conditions. Our solution requires PRNU fingerprints of the
cameras that were used to take the carved photographs. The
fingerprints are used to group image fragments by the source
camera and to precisely locate image fragments within the
original frame of the sensor. Additional clues, like the image
width, may be used to speed-up the grouping.

While the PRNU fingerprint is not always readily available,
it can be estimated from existing uncorrupted images. The
images may come from an independent storage, or even
be obtained in the process of carving the investigated drive
assuming enough undamaged photographs can be extracted
by conventional means. If the involved camera is available, an
arbitrarily high-quality fingerprint can be obtained from new
photographs. The minimum number of images needed for a
good fingerprint depends on their content, and typically varies
between 30 (for favorable bright and low-texture photographs)
and 60 (for arbitrary natural photographs).

The carved fragments do not need to come from pristine
images. Both local retouching (e.g., red eye, or blemish
removal) and global post-processing (e.g., brightness or con-
trast changes) are allowed, since PRNU matching is robust
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(e) ST Assembly of 100 images (40% missing fragments, lenient threshold)

Fig. 12. Assembly example for a large-scale problem: (a) 100 images reconstructed from 1092 fragments (no missing pieces); (b)-(c) 100 images reconstructed
from 636 fragments (40% pieces missing) by the proposed IG assembler; (d)-(e) the same problem reconstructed using the baseline ST assembler. A high

resolution version of these results is available in supplementary materials.

enough to work in such conditions. Resizing and cropping are
currently not supported, since they destroy synchronization
with the camera fingerprint, and a brute-force search would
result in prohibitive computational complexity.

VI. CONCLUSIONS

Our study addressed the problem of assembling useful
images from a novel source of forensic evidence - orphaned
photo fragments. Such fragments are carved without access to
file meta-data and are therefore susceptible to reconstruction
artifacts including brightness and color normalization prob-
lems. These artifacts render existing methods ineffective and
make it difficult to match even directly adjoining fragments.

The above problems lead to a novel variant of the jigsaw
puzzle problem which involves assembling such orphaned
fragments into meaningful images that could be used in law
enforcement and data recovery practice. The considered puzzle
is one of the most challenging variants of the problem as it

involves dealing with missing pieces and mixtures of unknown
numbers of images. Dealing with colorization artifacts is
necessary both when determining fragment compatibility and
when stitching the fragments into the final images.

For the discussed problem, we have exploited forensic im-
age analysis which can provide clues about the location of the
fragments within the original image frame. We have proposed
an efficient assembly algorithm based on interval graph theory.
The algorithm delivers comparable assembly performance to
state of the art puzzle solvers based on a minimal spanning
tree formulation. However, it requires fewer computations of
fragment compatibility - the most time-consuming step of
image assembly - which translated in 2-3 times lower runtimes
with our reference Matlab implementations.

We believe the described research makes an important
step forward towards adoption of orphaned photo carving
in regular forensic and data recovery practice. The problem
is particularly important for high-profile and sensitive child
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Fig. 13. Fragment assembling performance for a sub-set of similar images.
The input images in (a) are shown in their original form. The reconstruction
results in (c) have boosted contrast for better presentation clarity.

sexual abuse cases, where every piece of evidence may lead
not only to the conviction of the perpetrators but also to
reaching and helping the victims.
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