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Abstract
In this paper, we assess vulnerability of speaker verification sys-
tems to dictionary attacks. We seek master voices, i.e., adver-
sarial utterances optimized to match against a large number of
users by pure chance. First, we perform menagerie analysis to
identify utterances which intrinsically hold this property. Then,
we propose an adversarial optimization approach for generating
master voices synthetically. Our experiments show that, even in
the most secure configuration, on average, a master voice can
match approx. 20% of females and 10% of males without any
knowledge about the population. We demonstrate that dictio-
nary attacks should be considered as a feasible threat model for
sensitive and high-stakes deployments of speaker verification.

Index Terms: Adversarial Examples, Authentication, Biomet-
rics, Dictionary Attacks, Speaker Verification.

1. Introduction
Biometric technologies provide user profiling services based on
physical and behavioral traits. In a lot of use cases, they offer
a better user experience than traditional practices [1, 2, 3, 4].
While voice is one of the most analyzed biometric sources in
diverse applications [5, 6], its usage for authentication shows
vulnerability to impersonation attacks [7], e.g., spoofing [8], re-
play [9], synthesis [10] and transformation [11]. These attacks
require speech samples of the victim, and their collection can
greatly vary in difficulty based on the person’s public presence.

In this study, we demonstrate the feasibility of dictionary
attacks on the voice modality, which allows for targeting large
populations without specific knowledge of the individuals or
their speech models. Such attacks, recently demonstrated for
fingerprints [12, 13], rely on the necessary usability-security
trade-offs in mass deployments (e.g., only partial scans of mul-
tiple independent finger impressions) and stand in stark contrast
to the prevailing individual-targeted attacks [14]. The widely-
known menagerie analysis already hints at this vulnerability - it
shows that certain individuals act as wolves and can match a lot
of users. This suggests the existence of a potentially large fam-
ily of master voices (MVs) which match large populations by
chance with high probability. Such MVs don’t necessarily cor-
respond to a particular person’s voice, or even to human speech.

Our results show that adversarial attacks on modern speaker
verification systems allow for effectively seeking MVs that gen-
eralize between user populations. In our experiments, even in
the most conservative setting, on average, a MV could match
≈10% males and ≈20% females within a single presentation
attempt. This suggests that dictionary attacks should be consid-
ered as a valid threat model for speaker verification systems.

2. Related Work
Speaker Recognition. Speaker recognition has recently under-
gone a revolution thanks to deep-learned acoustic representa-

tions [15]. Best hand-crafted solutions rely on Gaussian mixture
models (GMMs) [16] trained on low dimensional feature vec-
tors, joint factor analysis (JFA) [17], or i-Vectors [18]. Modern
systems learn to extract effective acoustic feature vectors from
one of the last layers of deep neural networks (DNNs) trained
for standard or one-shot speaker classification. The most promi-
nent examples include d-Vectors [19], c-Vectors [20], x-Vectors
[21], VGGVox-Vectors [22], and ResNet-Vectors [23]. Re-
searchers also explore end-to-end training of such systems [24].

Speaker verification aims to confirm or refute the expected
identify of the speaker based on an enrolled speech model. The
user is asked to provide several samples of his speech, and the
utterances are then stored as a collection of acoustic feature vec-
tors. Depending on the verification policy, the presented input
may be compared with all of the collected vectors [25], or with
a single combined vector [19, 20]. While this makes the system
more robust and usable, it may compromise the overall security.

Adversarial Machine Learning. End-to-end optimization
of complex systems has spawned a new class of attacks based
on adversarial perturbations, which involve direct optimiza-
tion of the model inputs to trigger prediction errors [26]. Such
adversarial examples tend to be perceptually indistinguishable
from benign inputs, but contain carefully crafted noise which
triggers misclassification. The problem has recently attracted
massive interest of the machine learning and security commu-
nities [27, 28]. Known defenses range from detection of adver-
sarial inputs [29] to training of more secure models [30].

Currently, however, the bulk of the research focuses on
computer vision [31]. Adversarial attacks on audio focused on
speech recognition [32, 33, 34], and aim to trigger malicious
behavior, e.g., through the use of hidden voice commands [35].
Susceptibility of speaker verification has gained attention only
in the past year, and currently mirrors the spoofing attack, where
a specific user is targeted by the adversarial example [36]. We
believe it is imperative to consider a broader spectrum of at-
tacks, including dictionary attacks against larger populations.

3. Problem Statement
Let A ⊂ R∗ denote the domain of audio waveforms with
unknown length. We consider a traditional two-step process-
ing pipeline with an intermediate visual acoustic representa-
tion S ⊂ Rk×∗ (e.g., a spectrogram), and an explicit feature
extraction step which produces fixed-length representations in
D ⊂ Re. We denote the respective stages as F : A → S and
D : S → D. Given a verification policy p, a decision thresh-
old τ, andN enrolled utterances per user, a speaker verification
system can be defined as a function:

vp,τ : D ×DN
u → {0, 1} (1)

which compares an input feature vector d from an unknown user
with a set of enrolled feature vectors d1u, ..., dNu from user u to
confirm or refute the speaker’s identity (1 and 0, respectively).
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(a) 2-D t-SNE projection of the
explored VGGVox vectors.
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(b) Menagerie analysis within
the subgroup of female users.
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(c) Menagerie analysis within
the subgroup of male users.
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(d) False accept rate per utte-
rance on fe/male utterances.
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(e) Female user ranking based
on utterance false accept rates.
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(f) Male user ranking based
on utterance false accept rates.
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(g) Impersonation rate per
utterance with Any10 policy.
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(h) Impersonation rate per
utterance with Avg10 policy.

Figure 1: Exploratory menagerie analysis aimed to investigate the existence of master voices on the sampled population AV C2−Train.

We consider two verification policies p, AnyN [25] and AvgN
[19, 20], which rely on a similarity function S : D ×D → R:

vp,τ =

{
any

(
{S(d, diu) > τ : i ∈ 1, . . . , N}

)
if p = AnyN

S
(
d, 1

N

∑N
i=1 d

i
u

)
> τ if p = AvgN

Hence, finding master voices becomes an optimization problem,
which aims to find audio waveforms maximizing the following
objective function given a population of users U :

ã = argmax
a

E
u∈U

[
vp,τ

(
D(F(a)), DN

u

)]
(2)

3.1. Verification System and Data Sets

In this study, we leveraged the VoxCeleb data sets [22, 23] one
of the largest corpora for speaker verification and identification.
It includes unconstrained speech of celebrities, extracted from
public videos, and featuring diverse acoustic environments.

All waveforms were single-channel, 16-bit recordings sam-
pled at 16 kHz. As acoustic feature extraction F , we computed
magnitude spectrograms with a sliding window of size k = 512
samples, and a stride of 160 samples. We applied the Hamming
window of 512 samples. Then, mean and variance normali-
sation was performed on every frequency bin. As feature ex-
tractor D, we used the VGGVox model [22] pre-trained on the
train portion of the first version of the data set AVC1-Train (1,211
speakers) and validated on the test portion of the same data set
AVC1-Test. The model extracts a e = 1024-dimensional represen-
tation from each 512 × ∗ spectrogram. As similarity function
S, we used the cosine similarity. When we applied a policy, we
sampled N = 10 utterances per user for enrollment. The se-
lected value N can represent a good trade-off between long and
short enrolment lists employed by the existing literature.

For our experiments on master voices, we used the sec-
ond version of VoxCeleb [23]. From it, we sampled two dis-
joint populations, i.e., AVC2-Train for exploration and training,
and AVC2-Test for testing. Each included 1,000 speakers, equally
divided between the sexes. Each individual was represented by
50 utterances, leading to the total of 50,000 utterances with du-
ration between 4 and 10 seconds for each population.

The selected verification pipeline achieves an Equal Error
Rate (EER) of 8% on utterance-utterance pairs from the valida-
tion set AVC1-Test (consistent with results reported in [22]), which
increases to 11.2% on our sampled population AVC2-Train. Based
on the latter evaluation, we chose two global decision thresh-
olds for future experiments: τEER = 0.53 and τFAR1% = 0.74,
which correspond to the Equal Error Rate and False Acceptance
Rate (FAR) of 1%, respectively.

4. Exploratory Menagerie Analysis
Our first step was to perform exploratory menagerie analysis to
assess prevalence of naturally occurring wolves [37] - potential
candidates for master voices. We conducted the experiments
on AVC2-Train for male and female speakers separately, since they
exhibit distinct characteristics, which is confirmed in feature do-
main D (see Fig. 1a for a 2-D t-SNE projection [38]).

For each user, we first computed the average genuine score,
which represents how well they match against themselves, and
the average imposter score indicating how well they match
against others (Fig. 1b and 1c). Each point in the scatter plots
represents a user. Intuitively, to find good master voices, we are
interested in people in the top of the graphs since they cause a
disproportionate number of false acceptances. Interestingly, the
model revealed a bias against women, who exhibit significantly
greater intra-sex average imposter similarity than men.

To investigate this phenomenon, we resorted to utterance-
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Figure 2: The proposed approach for generating a master voice.

level analysis. In Fig. 1d, we show false acceptance rates for
utterance-to-utterance matching targeting a specific gender. The
x axis is ordered by FAR, which leads to nearly no errors at the
beginning, and a sudden deterioration in the middle, which cor-
responds to unlikely erroneous intra-sex matches. On the end,
the plot clearly shows the existence of outliers, and significant
differences between males and females. The plot also reveals
that, with the commonly used equal-error-rate threshold, the fe-
male wolves can match over 60% of their peers’ utterances.

We also assessed the consistency of individual speakers to
produce easily confusible utterances. The results are shown in
Fig. 1e and 1f for female and male speakers, respectively. For
each gender, we ranked the utterances belonging to that gender
by decreasing FAR and we grouped them in groups of 500 ut-
terances based on their position in the ranking (i.e., the top-500
utterances with highest FAR belong to the first group and so on).
For each user, we then counted how many of her/his utterances
belong to each group. Users who generate high FARs have a
lot of utterances in the top groups (bottom-left of the plots),
while users with less impersonation power have utterances in
the last groups (top-right of the plots). It can be observed that,
while some users are prone to produce high FARs, their utter-
ances are scattered across the groups. Hence, we can conclude
that while the individual speaker properties matter, there is a
strong content-related component which may inhibit attacks in
challenge-response scenarios where what it is said is important.

Finally, we assessed the impact of different verification
policies (Fig. 1g and 1h). For each enrolled utterance and user
u, we match other users based on their enrollment set, verifi-
cation policy, and decision threshold τ. With the Any10 policy,
we observed utterances capable of impersonating between 80%
and 90% of the users for τEER and between 20% and 35% for
τFAR1%. The results were only slightly worse for the Avg10
policy, where we observed impersonation rates between 60%
and 80% for τEER and between 10% and 25% for τFAR1%.

The impersonation results indicate that naturally occurring
wolves are good candidates for master voices given existing ver-
ification policies1. However, speech content and background
noise have strong influence as well, leading to difficulties in
finding a large collection of master voices for a successful dic-
tionary attack. Hence, in the following section, we explore ad-
versarial perturbations for seeking effective master voices.

1We acknowledge huge impact of the decision thresholds. However,
while a 1% FAR may already seem to be excessive, even state-of-the-art
models cannot guarantee acceptable TPRs for stricter thresholds.
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Figure 3: The core of the Gradient Computation module.

5. Master Voice Optimization
The goal of the optimization process is to generate a master
voice waveform which maximizes the expected FAR (2). Given
an existing seed waveform a and a set ofM training waveforms
ATrain of a large user populationU , we seek ã, which maximizes∑

u∈U vp,τ
(
D(F(ã)), DN

u

)
. We will later show empirically

that, although the optimization relies on a given population, the
results are fully generalizable to unseen individuals.

5.1. Optimization Procedure

Our optimization process seeks adversarial perturbations s̃ of
the selected input spectrogram s = F(a), and relies on an iter-
ated stochastic gradient descent (Fig. 2). By slightly perturbing
the input spectrogram, we are able to make it more and more
similar to an increasing number of training spectrograms, and
bias the verification choices the system makes towards higher
FAR. The following steps are repeated in every iteration t:

1. Mini-Batch Sampling. We sample a batch of m spec-
trograms Sbatch ← {F(a) : a ∈ ATrain} with m << M .

2. Gradient Computation. We pair the current iteration
of the input spectrogram s̃t and the batch spectrograms
{(s̃t, si) : si ∈ Sbatch} and feed them to the Siamese
network for comparison (Fig. 3). We compute gradients
w.r.t. s̃t and feed them to the next step for filtering.

3. Gradients Filtering by Similarity. We discard gradi-
ents obtained from target examples with similarity out-
side a certain range [Smin, Smax]. This prevents seek-
ing futile optimization directions, i.e., users who we al-
ready match, who we have negligible matching chances.

4. Perturbation Computation. We compute the adversar-
ial perturbation ∇̃t as follows:

∇̃t = max

(
α

N

∑
i

∇i, ∇̃min

)
(3)

where ∇̃min is the minimum perturbation, α is the learn-
ing rate, and∇i is the gradient from i-th filtered pair.

5. Spectrogram Update. We update the current estimate
of the input spectrogram as follows:

s̃t+1 = s̃t + ∇̃t (4)

The process is repeated until the gain in FAR is higher than γ.
We then get a master voice waveform ã by inverting its opti-
mized input spectrogram via the Griffin-Lim algorithm [39].
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Figure 4: The distribution of impersonation rates within the population AVC2-Test for F-F-F and M-M-M gender settings.

Table 1: Average impersonation rates of Seed (SVs) and master
voices (MVs) on the population AVC2-Test [%] for diverse seed,
training and testing genders (M : Male and F : Female).

Gender EER Threshold FAR1% Threshold

Seed Train Test Any10 Avg10 Any10 Avg10
SVs MVs SVs MVs SVs MVs SVs MVs

M M M 47.2 65.0 27.2 44.9 6.7 16.3 2.91 9.6
M F M 46.6 17.0 26.3 6.9 6.8 1.9 3.5 0.7
F M M 3.4 29.3 0.9 14.8 0.3 2.6 0.1 1.2
F F M 3.5 1.5 0.9 0.4 0.3 0.3 0.1 0.1

M M F 4.7 2.1 1.3 0.4 0.3 0.2 0.1 0.0
M F F 5.2 41.9 1.7 23.6 1.8 6.1 1.4 3.3
F M F 62.7 28.3 41.5 15.2 15.4 5.6 8.1 2.5
F F F 63.44 80.98 41.67 62.66 14.39 34.23 7.27 20.78

5.2. Evaluation Scenario and Results

Our optimization starts from a seed voice (SV) and aims to im-
prove its impersonation capabilities. To measure the improve-
ment that our optimization can achieve from an arbitrary SV,
we sample SVs from the population AVC2-Train while controlling
their initial impersonation power. For each gender, we ordered
the corresponding 25,000 utterances according to their inherent
impostor score for the Any10 verification policy and threshold
τEER. We sampled 200 utterances from uniformly distributed
percentiles in the population. Finally, we used our optimization
procedure, to yield 100 master voices (50:50 for males and fe-
males, respectively) optimized for intra-sex matching (i.e. train-
ing only on utterances from the same gender in AVC2-Train), and
100 master voices optimized for inter-sex matching (i.e. train-
ing only on utterances from the opposite gender in AVC2-Train).
We assess their impersonation rates on a separate testing data
set AVC2-Test (disjoint population of 1,000 people).

Table 1 compares the impersonation rates for seed and mas-
ter voices for different seed, training and testing genders, verifi-
cation policies and thresholds. The reported results correspond
to the test population AVC2-Test, with people unseen at the time of
optimization. On average, we can improve the seed imperson-
ation rate by 20 and 10 percentage points for τEER and τFAR1%,
respectively. For the least secure setting with the Any10 policy
and threshold τEER, on average, a MV can impersonate 80% of
females and 65% of males. In the most secure configuration,
the Avg10 policy and τFAR1%, on average, a MV can still imper-
sonate 20% of females and 10% of males.

Regarding gender, we observed a significant improvement
in the impersonation rates when the same sex is chosen for seed,
training and testing samples (i.e., M-M-M and F-F-F settings).
Moreover, when the training and the testing gender are the same

(i.e., F-M-M and M-F-F settings), the results seem to be good,
independent from the seed gender - except for Avg10 policy at
τFAR1%. This means that the added noise makes it possible to
use perturbed utterances to impersonate users of the opposite
gender. In contrast, settings with different training and the test-
ing genders (i.e., M-F-M, F-F-M, M-M-F, F-M-F) led to poor
results, highlighting how relevant the training gender is on the
optimization. Female MVs seem to be more powerful than male
MVs. This results from the gender bias observed on VGGVox.

In Fig. 4 we show the distribution of impersonation rates
in the populations of seed and master voices for F-F-F and M-
M-M gender settings. The probability of finding an utterance
with high impersonation rate is low in SVs (green lines), while
it significantly increases in MVs (blue lines). This means that
MVs produce high impersonation rates independently from the
starting utterance and, thus, from the speaker, the speech and
the environment. The difference in impersonation rates between
train (lighter colors) and test populations (darker colors) is neg-
ligible, so MVs generalize well across populations.

6. Conclusions and Future Work
We performed the first analysis of speaker verification systems
in the context of recently reported dictionary attacks on biomet-
rics. Based on the obtained results, we can conclude that:

1. Speech seems susceptible to dictionary attacks, and both
speaker and speech content affect impersonation rates.

2. Adversarial optimization can be used to significantly in-
crease impersonation capabilities of arbitrary inputs.

3. The gender bias of a verification model increases the dif-
ference in exposure to dictionary attacks across genders.

4. Master voices generalize well across populations and are
robust to spectrogram computation and inversion.

5. Dictionary attacks should be considered as a valid threat
model for speaker verification systems.

In next steps, we will investigate master voice transferability
and generative models usage for master voice generation.
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