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Abstract—Accurate unsupervised tampering localization is one
of the most challenging problems in digital image forensics. In
this study, we consider photo response non-uniformity (PRNU)
analysis and focus on the detection of small forgeries. For this
purpose, we adopt a recently proposed paradigm of multi-scale
analysis and discuss various strategies for its implementation.
Firstly, we consider a multi-scale fusion approach which involves
combination of multiple candidate tampering probability maps
into a single, more reliable decision map. The candidate maps
are obtained with sliding windows of various sizes and thus allow
to exploit the benefits of both small and large-scale analysis.
We extend this approach by introducing modulated threshold
drift and content-dependent neighborhood interactions, leading
to improved localization performance with superior shape repre-
sentation and easier detection of small forgeries. We also discuss
two novel alternative strategies: a segmentation-guided approach
which contracts the decision statistic to a central segment within
each analysis window; and an adaptive-window approach which
dynamically chooses analysis window size for each location in the
image. We perform extensive experimental evaluation on both
synthetic and realistic forgeries and discuss in detail practical
aspects of parameter selection. Our evaluation shows that multi-
scale analysis leads to significant performance improvement
compared with the commonly used single-scale approach. The
proposed multi-scale fusion strategy delivers stable results with
consistent improvement in various test scenarios.

Index Terms—digital image forensics; tampering localiza-
tion; decision fusion; multi-scale analysis; photo-response non-
uniformity; Markov random fields

I. INTRODUCTION

Analysis of sensor pattern noise signatures, and in particular
photo-response non-uniformity (PRNU), constitutes one of the
most powerful forensic techniques for digital photographs [1].
Imperfections of imaging sensors introduce consistent noise,
characteristic for each device, which enables reasoning about
the origin and authenticity of photographs. Identification of
signature inconsistencies in various regions of an image leads
to a localization map indicating the most likely tampered
content and is invaluable for discovering intentions of a forger.

Despite considerable interest of research community, reli-
able tampering localization with PRNU signatures still poses
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challenges - especially for small forgeries. The core of PRNU
signature verification involves correlation of a known noise
pattern with its estimate from the investigated image. The
operation is performed in a sliding window manner, which
causes problems when the current window is heterogeneous,
i.e., contains both original and tampered pixels.

The problem can be mitigated by explicitly guiding the
computation with boundaries of image segments [2], or with
guided filtering [3, 4]. Both approaches essentially contract
the scope of correlation statistics. The first study used man-
ual segmentation, requiring forensic analysts to painstakingly
delineate meaningful objects in the image [2]. This method is
particularly beneficial for small forgeries involving insertion of
a highly contrasting object onto a solid background. However,
for subtle object removal forgeries it is often impossible to
define meaningful segments for such analysis. Additionally,
prospective automation of this approach depends heavily on
the success of image segmentation, which is still a challenging
problem on its own. Instead, a recent study proposed to use
guided filtering, but demonstrated no benefits for forgeries
larger than ≈ 128× 128 px [3].

Localization performance can also be improved by incorpo-
rating dependencies between neighboring image regions, e.g.,
by adopting a Markovian prior, which allows to propagate reli-
able decisions into ambiguous areas [5]. Further improvement
can be obtained by better suppression of image content in
the PRNU estimate. This can be achieved by: adopting more
reliable denoising (e.g., BM3D [5, 6]); equalizing the spectrum
of the PRNU [7]; retaining only its phase information [8]; at-
tenuating strong components bleeding from image content [9];
or suppressing color interpolation artifacts based on color filter
array’s structure [10].

An ability to detect small forgeries is directly connected
to the analysis window size, and constitutes one of the key
trade-offs in unsupervised tampering localization. On the one
hand, it is desirable to use small windows, capable of detecting
even small forgeries. On the other hand, larger windows
are required to obtain sufficient discriminability of detection
statistics. Following the recommendations of Chen et al. [11],
the prevailing window size in PRNU analysis is 128×128 px.
We have recently proposed a multi-scale analysis approach
which addresses the above problem and combines the benefits
of small-scale and large-scale analysis [12]. Our method
involves generation of separate candidate maps, obtained with
different analysis windows, and their subsequent fusion into
a single, more reliable map. Our previous work focused on
the detection of JPEG splicing forgeries based on supervised
learning with support vector machines trained on mode-based
first digit features of DCT coefficients [13].

In this work, we study different strategies for performing
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multi-scale analysis in PRNU-based tampering localization.
Firstly, we adapt our fusion procedure to the forensic detector
at hand. We further extend our approach by introducing
content-dependent neighborhood interactions and modulated
strength of the threshold drift. The resulting fusion method
enforces stronger decision propagation within similar image
regions leading to superior shape representation and more
reliable detection of small forgeries. Hence, the introduced
adaptive neighborhood interactions serve the same purpose as
the recently proposed method based on guided filtering. How-
ever, it is easier to generalize to arbitrary forensic detectors,
not necessarily involving 2-dimensional image filtering.

Secondly, we consider two novel alternative strategies. Our
segmentation-guided strategy computes the correlation over a
central segment within each analysis window. Our approach
builds upon the main ideas of Chierchia et al. [2, 3] but obtains
better results with consistent improvement regardless of the
tampering area’s size. We also consider a novel adaptive-
window strategy, which chooses the analysis window size
individually for every location in the image. We enhance both
strategies, by adopting a conditional random field (CRF) to
model neighborhood interactions and make the final decision.

We perform extensive experimental evaluation both on syn-
thetic forgeries with strictly controlled tampering area, and
on high-quality realistic forgeries prepared in modern photo-
editing software. The considered multi-scale strategies allow
to obtain significant performance improvement compared to
conventional single-scale analysis. The proposed multi-scale
fusion approach is the most versatile approach and delivers
consistent benefits in diverse test scenarios.

The main contributions of our work include: (1) detailed
discussion and experimental evaluation of various strategies
of multi-scale analysis in PRNU-based tampering localization;
(2) adaptation of our multi-scale fusion approach to PRNU-
based tampering localization and its further extension by
introducing content-dependent neighborhood interactions; (3)
practical implementation of two alternative adaptive strategies,
further augmented with a random field-based decision; our
segmentation-guided strategy addresses limitations of a recent
similar method based on guided filtering and obtains signif-
icant improvement of localization performance regardless of
the tampering area’s size.

The paper is organized as follows. In Section II, we review
the state-of-the-art in tampering localization techniques and
introduce the fundamentals of PRNU-based localization. We
then extend our multi-scale fusion approach (Section III) and
introduce two novel alternative strategies (Section IV). Our
experimental evaluation scenario, and the obtained results are
presented in Section V. Finally, we discuss the conclusions and
limitations of our work (Section VI). The paper comes with
supplementary materials and source code available online.

II. EXISTING TAMPERING LOCALIZATION TECHNIQUES

Analysis of sensor pattern noise is not the only method
of unsupervised tampering localization. A compelling image
forgery needs to satisfy both high-level and low-level con-
sistency constraints. High-level aspects include consistency

of shadows & lighting [14, 15], depth-of-field & motion
blur [16, 17], and perspective & geometry [18, 19]. Similarly,
sophistication of the image acquisition pipeline allows to
exploit many low-level signatures, starting from image demoi-
saicing [20, 21], camera response function [22], or local noise
levels [23], up to final stages of JPEG compression [13, 24,
25]. When analyzing uncompressed bitmap images, forensic
analysis can look for traces of previous compression, and even
estimate the utilized JPEG quantization tables [26].

It is also possible to detect traces of popular forgeries, (e.g.,
splicing [27], copy-move [28], seam carving [29]) or other
common image processing that is often used to mask the actual
forgery (e.g., median filtering [30], resampling [31]). While
many existing detectors are targeted at one specific type of
forgery, some studies aim to provide general solutions capa-
ble of distinguishing many operations. A popular approach
involves adoption of pixel co-occurrence models from image
steganalysis (e.g., subtractive pixel adjacency matrix [32]
or spatial rich models [33]). Such features can discriminate
boundaries of a splicing forgery [34], low-level characteristics
of specific camera models [35], or image patches with various
post-processing [36, 37]. It has been recently shown that
low-level models based on Gaussian mixtures can deliver
competitive performance in the latter problem [37].

The final decision can hence include hints of many indepen-
dent detectors, which can be fused together into a single more
reliable assessment. Existing approaches vary from standard
supervised or ensemble learning [38, 39] to sophisticated
frameworks based on fuzzy logic [40], or the Dempster-
Shafer theory of evidence [41]. The latter allow to deal with
uncertainty and compatibility of individual detectors by defin-
ing both feasible and unfeasible combinations of individual
traces. While decision fusion seems to be an emerging trend
in image forensics, it has been studied mainly for forgery
detection. In tampering localization simple logical rules still
prevail [42, 43], and extension of advanced fusion methods is
the subject of ongoing research [44]. A recent evaluation of
various combination rules in a tampering localization scenario
can be found in [43].

A conventional approach to tampering localization involves
comparing responses of a forensic detector to a threshold.
While the threshold can be chosen based on solid theoretical
foundations, e.g., the Neyman-Pearson criterion [11], it is non-
trivial to accurately model conditional distributions of the
detection statistic. As a result, researchers began to explore
other approaches that dispense with explicit distribution mod-
eling. It can be argued that tampered areas should constitute a
sparse cluster of outliers in a forensic feature space [45]. An
iterative procedure derived from robust principal component
analysis (PCA) can estimate the expected low-rank structure
of pristine image features and detect non-matching tampering.
This method does not require any training and relies solely
on the investigated image. Tampering localization can also be
performed by analyzing the behavior of a random walker on a
graph spanned over the image [46]. Weights in the graph are
derived from responses of a forensic detector. Performing the
random walk according to a maximal entropy principle pos-
sesses a strong localization property, which allows to highlight



tampered areas, and attenuate unimportant background.

A. Tampering Localization with PRNU Analysis

This section briefly introduces PRNU-based tampering lo-
calization. For more information, readers can refer to [11].

Due to manufacturing imperfections, imaging sensors ex-
hibit minor photo response variations across their pixels.
This phenomenon manifests itself as a slight device-specific
noise that is consistent for all photographs. Estimation of this
noise (with proper care accounting for post-capture geometric
distortions like resizing, cropping or lens distortion compen-
sation [47, 48]) yields a unique fingerprint of the camera,
enabling reasoning about the origin, processing history and
authenticity of digital photographs.

In the following description, we denote 2-dimensional ar-
rays with lowercase bold symbols (e.g., y), and for the sake
of notation simplicity address individual elements of the array
with a single index (e.g., yi). We consider a simplified model
of the image acquisition pipeline [11]:

yi = (1 + ki)xi + ni , (1)

where y is a captured image; x is its idealized noise-free
version; k is the PRNU pattern; and n is an additive distortion
that accounts for all remaining sources of noise. The PRNU
k can be estimated according to the maximum likelihood
principle from residual images r with suppressed content:

ri = yi − x̂i ≈ yiki + n′i , (2)

where n′ is an aggregated noise component, and x̂ = D(y) is
an estimate of the noise-free image, obtained with a denoising
filter, such as wavelet-domain filtering [49] or BM3D [6].

The tampering localization protocol involves sliding win-
dow analysis of the investigated photograph. Let y[i](ω) denote
contraction of the original image y to a square window of size
ω×ω centered around pixel i. For notation simplicity, we will
omit the window size index if it is clear from context. Then,
a correlation field can be obtained by computing normalized
correlation between the residual image r[i] with an estimate
of the PRNU k̂[i] (multiplied by image content y[i]):

qi = r[i]⊗ k̂[i] =
(r[i]− r[i])� (k̂[i]− k̂[i])

||r[i]− r[i]|| · ||k̂[i]− k̂[i]||
, (3)

where � denotes element-wise multiplication, and operators
||r|| and r correspond to L2 norm and average value of array r.
Based on the obtained detection statistic, the detector decides
in favor of one of two hypotheses: H0 - signature is absent
(content is tampered with); H1 - signature is present (content
is authentic).

From (2) and (3) it clearly follows that the decision is
highly dependent on image content - stronger response can
be expected in bright and flat image regions with reduced
contamination of the signature by the remains of the image’s
texture. This challenge is addressed by predicting the expected
correlation response q̂i = Q(y[i]|θ) based on selected features
of the content [11]. The predictor, parametrized by θ, takes
into account special situations like saturated image regions
where PRNU cannot be detected. In practice, the measured

correlation qi oscillates around the expected values (0 or q̂i for
tampered and authentic regions, respectively). This stochastic
process is commonly modeled either as a Gaussian or a
generalized Gaussian distribution [5, 11]. For each analysis
window, the detector ranks the likelihood of the following
hypotheses (assuming a Gaussian noise model):{

H0 qi ∼ N (0, σ0) ,

H1 qi ∼ N (q̂i, σ1) .
(4)

Hence, a typical camera model will contain:
k̂ PRNU estimate,
σ0 variance of the detection statistic for H0,

σ1 variance of the detection statistic for H1,

θ parameters of the correlation predictor.

(5)

Due to signatures’ independence under H0, the variance σ0

can also be estimated as σ0 = 1/m with m denoting the
number of samples (pixels) used in the computation. Finally,
the probability of the image window being tampered is:

ci = B(qi|σ0, σ1, q̂i) =
PN (0,σ0)(qi)

PN (q̂i,σ1)(qi) + PN (0,σ0)(qi)
(6a)

=

(
1 + e

−log(σ1/σ0)− (qi−q̂i)
2

2σ21
)+

q2i
2σ20

)−1

(6b)

where PX denotes a probability density function of distribution
X . Computation in log domain (6b) allows to avoid numerical
precision limitations.

The original localization method [11] used a slightly differ-
ent formulation where the obtained correlation qi is validated
against two thresholds corresponding to the desired error rates.
However, in the considered decision fusion setting it is crucial
to exploit full real-valued responses (be it probabilities or
other scores). Such measurement-level fusion leads to better
performance than binary decision-level fusion [12, 41]. Adop-
tion of probabilities instead of raw correlation [5] or peak-to-
correlation energy (PCE) scores (commonly used in PRNU-
based source attribution [1]), makes it more convenient to for-
mulate the fusion problem, and facilitates easier generalization
to different forensic detectors where probabilistic measures
emerge naturally.

In order to obtain reliable statistics, the correlation should
be computed over sufficiently large windows. However, ex-
cessively large sizes are discouraged since they are more
likely to: (a) miss small forgeries; (b) violate stationarity
assumptions [11]. Hence, the choice of analysis window size
involves a trade-off between the desired localization resolution
and reliability of the detection statistic. Following the original
paper [11], virtually all PRNU-based localization schemes
described in scientific literature use square windows of size
ω = 128. The computed scores can be applied either to a
central pixel of the window (central-pixel attribution) or to all
pixels in the window (full-window attribution). Due to large
window size, PRNU-based localization schemes typically use
the former strategy. The described localization algorithm is
summarized as pseudo-code in Alg. 1.



Algorithm 1 Pseudo-code for the standard localization algorithm: D -
denoising; Q - correlation predictor; B - tampering probability; S - sub-
sampling & padding; H - post-processing heuristics.

Input: y, k̂ . input image, PRNU estimate
Input: ω,∆ω, τ . window size, analysis stride, threshold
Input: θ, σ0, σ1 . camera model parameters

r← y −D(y) . noise residual
for i ∈ analysis locations do
q̂i ← Q(y[i] | θ) . correlation estimate
qi ← r[i]⊗ k̂[i] . correlation, Eq. (3)
ci ← B(qi | q̂i, σ0, σ1) . tampering probability, Eq. (6)

end for
c← S(c,∆ω) . sub-sampling & padding
return t← H(c > τ) . final decision

Based on the obtained tampering probability map, the final
decision map is obtained by heuristic post-processing. Firstly,
the real-valued map c is compared to a threshold τ . The
resulting binary map is cleaned by removing small connected
components having less than a quarter of the total pixel count
in the window. Finally, morphological dilation is applied to
compensate for the erosion of the detection boundary and fill
prospective small holes in the detected objects. In this study,
we used a disk-shaped structural element with radius of 10 px.

III. MULTI-SCALE FORENSIC ANALYSIS

In this section, we introduce multi-scale forensic analy-
sis [12]. We focus on a random-field formulation of the
problem where decision fusion resolves to finding an optimal
labeling of authentication units (e.g., image blocks / pixels)
that minimizes a given energy function. We have adapted
the algorithm to specific characteristics of PRNU verification
and further extended it with new features. The differences
with respect to the original algorithm are as follows: (1)
we discard only empty candidate maps that contribute no
information for the localization procedure; (2) we do not
perform separate detection of unreliable image regions and
rely on the correlation predictor to account for such cases; (3)
we use real-valued instead of binary reliability maps; (4) we
modulate the strength of the threshold drift proportionally to
the reliability of individual image regions; (5) we introduce
adaptive neighborhood interactions which strengthen decision
propagation within similar image regions.

Note that changes (1) and (2) were made specifically for
the PRNU detector at hand, and may need to be reconsid-
ered when adopting multi-scale analysis for other detectors.
The remaining modifications are more general enhancements,
which give the algorithm more flexibility and should improve
localization capabilities regardless of the detector. In partic-
ular, modification (5) leads to significantly improved shape
representation and enhances detection of small forgeries.

A. Fundamentals of Multi-scale Forensic Analysis

Multi-scale tampering localization involves analysis of the
investigated image with sliding windows of successively in-
creasing size {ωs} for s ∈ {1, . . . , S}. Resulting candidate
maps are then fused together to obtain a single tampering map
that combines the benefits of both small-scale and large-scale

tampered ground truth 32 px window 64 px window 128 px window

Fig. 1. Example multi-scale tampering probability maps for 3 realistic
forgeries; while the forgeries are only roughly detected by the default 128 px
window, they are accurately detected by smaller windows; uncertainties (gray
regions with scores ci ≈ 0.5) will be resolved by a multi-scale fusion
procedure by exploiting information available in all scales of analysis.

analysis. Formally, the goal of a fusion procedure is to produce
a binary decision map given a set of S candidate maps:(

{c(s)}, {p(s)},y
)
→ t ∈ {0, 1}N , (7)

where c(s) ∈ [0, 1]N denotes the s-th input candidate map
corresponding to analysis window of size ωs. We assume
identical size of all maps N = Nx × Ny with elements
corresponding to tampering probabilities of individual au-
thentication units. Each candidate map has a corresponding
reliability map p(s) ∈ [0, 1]N which identifies its unreliable
regions, e.g., due to pixel saturation or other limitations of the
forensic detector. The fusion procedure can also exploit image
content y to guide tampering localization.

Three example sets of multi-scale tampering probability
maps are shown in Fig. 1. Note that while the forgeries
are only roughly detectable with the commonly used 128 px
window, they can be accurately detected in smaller scales.
While smaller windows yield more noisy and uncertain maps
(many regions with scores ci ≈ 0.5), these ambiguities can be
resolved by the fusion procedure by incorporating information
available on all scales of analysis.

The fusion problem can be formulated in terms of random
fields and resolves to finding the optimal labeling of authen-
tication units (with labels ti = 1 corresponding to tampered
regions) that minimizes the following energy function [12]:

1

S

N∑
i=1

S∑
s=1

Eτ (c
(s)
i , ti) + α

N∑
i=1

ti +

N∑
i=1

∑
j∈Ξi

βij |ti − tj | . (8)

The first term (referred to as the data term) penalizes dif-
ferences with respect to the candidate maps (the potentials
Eτ (c, t) will be described in detail later). The second term
introduces a penalty α for tampered authentication units,
and thus can be used to bias the decision towards either
of the hypotheses. The third term penalizes differences in
the decisions for neighboring authentication units, and thus
encodes a preference towards piecewise-constant solutions.

The above formulation uses a Markovian prior to model
interactions between neighboring authentication units. The
decision for each unit i depends directly only on its own
potentials, and on the decisions for its neighbors j ∈ Ξi. In this
study, we consider a 2nd-order neighborhood, i.e., Ξi contains
up to 8 immediate neighbors (pruned accordingly near image



borders). In our previous work, the neighborhood interaction
penalty βij was set to a constant value βij = β. In this study,
we allow for adaptive selection of the penalty for each pair
of authentication units (i, j). The issue will be discussed in
detail in Section III-C.

Potentials of the data term are responsible for maintaining
resemblance to the input candidate maps. Since the candidate
scores correspond to probabilities of individual hypotheses, the
data terms could be obtained as −log(ci) and −log(1 − ci),
respectively. However, we use the following generalization:

Eτ (c, t) = −log max(Ψmin,Ψτ (c, t)), (9)

with Ψmin ∈ [0, 1] and:

Ψτ (c, t) =

{
1− c

2τ for t = 0,

1 + c
2(1−τ) −

1
2(1−τ) for t = 1,

(10)

where τ ∈ (0, 1) is a quasi-threshold that equalizes potentials
for both decisions, i.e., Eτ (τ, 0) = Eτ (τ, 1). Setting a minimal
value Ψmin (0.001 in our experiments) prevents the nodes from
becoming fixed to certain decisions (due to infinite energy).

Similarly to our previous work, we use the technique of
threshold drift [12] - we perform successive adjustment of the
quasi-threshold based on hypothetical intermediate decisions
from smaller scales. We record an individual threshold for each
authentication unit τ (s)

i , and update it as follows:
τ (1) if s = 1 ,

τ
(s−1)
i + δp

(s−1)
i if s > 1 and c(s−1)

i ≤ τ (s−1)
i ‘,

τ
(s−1)
i − δp(s−1)

i if s > 1 and c(s−1)
i > τ

(s−1)
i ,

(11)

where δ ∈ [0, 1] is the strength of the drift and τ (1) is an
initial threshold, typically chosen around 0.5. In order not to
discard extremely confident scores from larger scales, we do
not drift the threshold above 0.95 or below 0.05. In contrast
to our previous work, the drift is weighted proportionally to
the regions’ reliability. Such an approach can further improve
the tampering localization performance.

B. Map and Region Reliability in PRNU Analysis

We consider two aspects of map reliability. Firstly, each
candidate map has a corresponding reliability map p(s) which
indicates regions with reliable (pi = 1) and unreliable candi-
date scores (pi = 0). Unreliable regions may benefit from
resetting their scores (e.g., to eliminate false positives in
saturated areas) either to 0 (a conservative strategy) or close to
the initial threshold τ (1) (to facilitate easier score propagation
through neighborhood interactions). Regions with intermediate
values will exhibit proportionally attenuated behavior, e.g., by
weighting the strength of the threshold drift in (11).

In general, the way of implementing reliability scores de-
pends on individual characteristics of a forensic detector. For
the considered PRNU detector, unreliable regions correspond
to dark, highly textured or saturated areas. However, the
correlation predictor is designed to account for these problems
leading to overlapping distributions of the detection statistic
and candidate scores close to 0.5. Hence, we do not perform
separate detection of such regions, and set the reliability values

image-guided neighborhood interactionsdefault neighborhood interactions

Fig. 2. Example multi-scale fusion result with default, content-independent
(left) and adaptive, image-guided (right) neighborhood interactions; red color
denotes ground truth; green denotes detected tampering.

proportionally to the distance of the scores from 0.5. We used
the following reliability expression:

pi = 1− e−ξ0|ci− 1
2 |
ξ1
, (12)

and found parameters (ξ0 = 30, ξ1 = 2.5) with a grid search
on a small set of diverse test images. For each considered
reliability curve, we searched for the best parameters of the
CRF (see Section V-C for a detailed description) that maximize
the average F1 score. The best / worst observed F1 scores
were approximately 0.63 and 0.60, respectively. The worst
performance was observed for a degenerated curve where
pi := 1 which corresponds to the unweighted threshold drift
used in our previous work [12]. We found that the shape of the
curve is not very important, as long as it assigns high reliability
to confident scores and smoothly decreases as ci → 0.5.

In our previous work [12], we found it very important to
assess the utility of whole candidate maps, and reject the
ones that do not contribute any useful information for the
localization. A similar observation was also made in a multi-
modal fusion setting by Ferrara et al. [44] who discarded
tampering maps having less than 1/8 tampered blocks. Our
previous approach measured similarity of candidate maps to
random Gaussian noise. However, in the considered scenario
such an approach tended to mix borderline cases and remove
some noisy but useful maps. Based on further evaluation,
we observed that adverse effect of noisy maps is largely
eliminated by the introduced modulation of the threshold drift.
Therefore, in this study we discard only empty maps which
contribute no useful information for the localization procedure.

C. Exploiting Image Content

The neighborhood interaction penalty β can be computed
individually for each pair of neighboring authentication units.
We use the tampered image (down-sampled to match the size
of candidate maps: y→ y′) to guide the process. We consider
two components of the interaction penalty:

βij = β0 + β1e
− 1

2φ
−2||y′i, y

′
j ||

2
L2 , (13)

where the ||y′i, y′j ||L2 operator denotes L2 distance between
two pixels (computed from RGB vectors). The first term en-
codes a default, content-independent penalty. The second term
represents the interactions of only similar authentication units,
with similarity attenuation controlled by parameter φ (we use
an empirically chosen φ = 25). Analogous adaptive terms are
used in state-of-the-art image segmentation methods [50].



Fig. 2 shows an example result of multi-scale tampering
localization with (right) and without (left) content-dependent
penalties. In the former case, the detected area (green) matches
the ground truth (red) significantly better. While best results
can be obtained for contrasting object insertion forgeries, we
did not observe negative effects for more subtle cases with
object removal which are challenging for previous methods
based on explicit image segmentation. Hence, the introduced
mechanism leads to similar benefits as the mentioned guided
filtering approach [3]. However, since it does not rely on con-
volutions, it can be easily adopted to other forensic detectors.

IV. ALTERNATIVE ADAPTIVE STRATEGIES

Fusion of separate multi-scale maps is not the only way
to exploit the benefits of multi-scale analysis. We consider
two alternative strategies, including a segmentation-guided
approach inspired by the work of Chierchia et al. [2, 3]
(Section IV-A); and an adaptive-window approach where the
window size is dynamically chosen for every location in the
image (Section IV-B).

For both strategies, we compare two methods of making the
final decision. Firstly, we use a conventional post-processing
heuristic, which involves explicitly comparing the tampering
probability map to a threshold, followed by removal of small
connected components (having less than 322 = 1024 px). Note
that in contrast to single-scale detectors, adaptive strategies are
expected to follow objects’ edges much more accurately and
are not subjected to morphological dilation.

Secondly, we consider a simplified version of the condi-
tional random field (CRF) described in Section III with the
following energy function:

E(t|c) =

N∑
i=1

Eτ (ci, ti)+α

N∑
i=1

ti+

N∑
i=1

∑
j∈Ξi

βij |ti−tj | . (14)

Analogously to multi-scale fusion, this decision is controlled
by a quasi-threshold τ and parameterized by tampering penalty
α, and two interaction parameters β0, β1. As a result, it can
also benefit from adaptive neighborhood interactions.

A. Segmentation-Guided PRNU Analysis

Our segmentation-guided detector is fully automatic and
uses rough segmentation boundaries to limit the scope of
correlation statistics. We start with the default window of
size ω = 128 with central-pixel attribution. However, the
correlation is computed only for pixels that belong to the
same segment as the central pixel. Let v ∈ {0, 1}ω×ω denote
a binary matrix serving as a segmentation mask, initialized
based on pixel distance in the RGB space:

vj = 1⇔ 1

3
||y[i]j , yi||L1 < ∆y . (15)

We then clean the resulting segmentation with small-size mor-
phological closing (we used a disk-shaped structural element
of radius 8 px) and leave only the central segment, i.e., we
eliminate connected components that do not overlap the i-
th pixel. In order to prevent excessive degradation of the
correlation statistic, we assume that at least ω2

min px are

Algorithm 2 Pseudo-code for the segmentation-guided localization algo-
rithm: D - denoising; Q - correlation predictor; B - tampering probability; S
- sub-sampling (including missing edges completion).

Input: y, k̂ . input image, PRNU estimate
Input: ω,∆ω, τ . window size, analysis stride, threshold
Input: θ, {σ0(ωs), σ1(ωs)} . multi-scale camera model
Input: ∆y, ωmin . similarity threshold, minimum window size

r← y −D(y)
for i←locations do

v← 1
3
||y[i], yi||L1 < ∆y . rough segmentation

v← morphological closing of v . cleanup
v← central connected component of v
while ωeff =

∑
v < ω2

min do
v← morphological dilation of v . grow region if too small

end while
q̂i ← Q(y[i](ω) | θ) . correlation estimate
qi ← {r[i]j : vj = 1}⊗{k̂[i]j : vj = 1} . correlation, Eq. (3)
ĉ← B(qi | q̂i, σ0(ωeff ), σ1(ωeff )) . tampering prob., Eq. (6)

end for
c← S(c,∆ω) . sub-sampling & padding
return t← argmin

t
E(t|c) . final decision, Eq. (14)

required for the computation. If the segmentation yields a
smaller region, we expand it with small-scale morphological
dilation. Finally, we adapt the distribution models for the
H0 and H1 hypotheses by matching their variances σ0, σ1 to
the actual number of pixels used in the correlation (we used
cubic spline interpolation between the estimates σ0(ωs) and
σ1(ωs) available in our multi-scale camera model). The above
algorithm is summarized as pseudo-code in Alg. 2.

An example localization result is shown in the top row
of Fig. 3 which compares correlation fields and tampering
probability maps for both the described segmentation-guided
and the original fixed-window methods. The segmentation-
guided approach can accurately delineate boundaries of con-
trasting objects, leading to better shape representation, and
detection of small forgeries (e.g., the peak of the pagoda).
However, if the forgery involves subtle object removal with
no obvious boundaries (e.g., inpainting of the electrical wire)
no improvement should be expected.

Note that in principle such an approach should use a more
sophisticated predictor capable of adapting to arbitrary shapes
of image segments. However, the ability to design a better
predictor is still an open problem [5] and we leave this
aspect for our future work. Note also that the necessity to
adapt hypothesis models in the predictor requires control over
the actual number of pixels used in the correlation. As a
result, although soft-segmentation (e.g., guided filtering) is an
inspiring idea, it is likely suboptimal. This argument seems
to be supported by the fact that our simple segmentation-
guided strategy (both with heuristic and CRF-based decision)
obtains better results than the original guided filtering-based
approach [3]. In contrast to their method, we observed consis-
tent improvement of localization performance - even for large
forgeries (see Section V-D).

B. Adapting Window Size in PRNU Analysis

The adaptive-window strategy involves choosing analysis
window size individually for each location in the image. In
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Fig. 3. Example localization result for alternative adaptive localization strategies; the segmentation-guided strategy (top right) can accurately delineate
contrasting segments which leads to better shape detection and even to the detection of very small forgeries (peak of the pagoda); however, it is not beneficial
for subtle object removal forgeries (e.g., the inpainted electrical wire) which are easier to detect with the adaptive-window strategy (bottom); window size
visualization shows the index s of the chosen scale starting from 32× 32 px (black) to 256× 256 px (white).

Algorithm 3 Pseudo-code for the adaptive-window localization algorithm:
D - denoising; Q - correlation predictor; B - tampering probability; S - sub-
sampling (including missing edges completion).

Input: y, k̂ . input image, PRNU estimate
Input: {ωs},∆ω, τ . window sizes, analysis stride, threshold
Input: {θ(ωs), σ0(ωs), σ1(ωs)} . multi-scale camera model
Input: ∆c1,∆c2 . score thresholds (stopping criteria)
r← y −D(y)
for i←locations do
s← 1 . start with the smallest window
c̃← 0.5 . buffer for last score
smax ← max window for location i
while s ≤ smax and |c̃− 0.5| < 0.5−∆c1 do
q̂i ← Q(y[i](ωs) | θ(ωs)) . correlation estimate
qi ← r[i](ωs) ⊗ k̂[i](ωs) . correlation, Eq. (3)
ĉ← B(qi | q̂i, σ0(ωs), σ1(ωs)) . tampering prob., Eq. (6)
if |ĉ− 0.5| > |c̃− 0.5| then
ci ← ĉ . use new score if more confident
if |c̃− 0.5| > ∆c2 and (c̃− 0.5)(ĉ− 0.5) > 0 then
s← S . if confident enough and scores agree, stop

end if
c̃← ĉ

end if
s← s+ 1 . increase window size

end while
end for
c← S(c,∆ω) . sub-sampling & padding
return t← argmin

t
E(t|c) . final decision, Eq. (14)

our experiments, we used a small set of candidate scales {ws}.
The analysis starts by evaluating the tampering probability
according to (6b) for the smallest window (in our case, the
ω1 = 32 window). If the window is too small and a confident
decision cannot be reached, the window size is increased to
the next available scale ωs+1. Such an approach will use
smaller windows in more confident, bright and flat areas, and
larger windows in darker, more textured regions of the image.
In our experiments, we proceed to the next window size if
|ci−0.5| < 0.5−∆c1. The new tampering probability estimate
is accepted if it is more confident than the previous one.

Since unreliably detected small forgeries are likely to be
replaced by a confident contrary decision as soon as the
window size gets large enough, we use an additional rule

which stops increasing the window size if the next (larger)
window reinforces a previous, reasonably confident detection
(|ci − 0.5| > ∆c2). We stop increasing the window size after
the largest possible scale is reached - either ωS = 256 or a
smaller one in the vicinity of image borders. The described
algorithm is summarized as pseudo-code in Alg. 3.

An example localization result is shown in the bottom
row of Fig. 3. Note that the correlation field, although more
noisy, represents tampered objects more accurately. It allowed
to detect a small inpainting forgery that was missed by
other detectors. Just as expected, analysis windows are larger
in darker, more textured areas, but quickly get smaller in
favorable conditions. Note that the described approach is prone
to generate small false positives stemming from inaccurate
predictions on the smaller scales. However, we found that
introduction of neighborhood interactions by means of a CRF
can effectively remove most of the artifacts. The final decision
map in Fig. 3 is free of false positives.

V. EXPERIMENTAL EVALUATION

Our experimental evaluation covers both synthetic (Sec-
tion V-D) and realistic (Section V-E) forgeries. Our primary
evaluation criterion is the F1 score:

F1 =
2· tp

2· tp+ fn+ fp
, (16)

where tp, fn, fp denote statistics of the observed true
positives, false negatives, and false positives. We summarize
localization performance as an average F1 score (averaged
over test images for a given decision threshold). We also
consider peak F1 scores which correspond to the maximal
F1 score for each test image (over all possible thresholds τ ).
For the sake of discussion completeness, we also generate
the corresponding receiver operation characteristics (ROC) by
sweeping the decision threshold τ over 49 values uniformly
distributed in (0,1). Note however, that we do not perform any
explicit optimization of ROC performance.

A. Evaluated Detectors
Our evaluation includes four basic variants of PRNU-based

localization (described in detail in Sections III and IV).
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Fig. 4. Visualization of a multi-scale camera model of a Sony SLT α57 camera: (top) empirical distribution of the correlations for the H0 hypothesis during
predictor training and the corresponding Gaussian fit; (middle) empirical distribution of the correlations for the H1 hypothesis; (bottom) correlation prediction
accuracy visualized as a 2-dimensional histogram of the real vs. prediction scatter plot; all histograms share the same range for the X axis.

First, we consider a series of conventional single-scale
detectors (for various window sizes) with heuristic map
post-processing. Secondly, we consider a multi-scale fu-
sion approach (abbreviated as MSF) which combines mul-
tiple candidate maps obtained with windows ωs ∈ Ω =
{32, 48, 64, 96, 128, 192, 256}. Finally, we consider two vari-
ants of the adaptive-window (AW) and segmentation-guided
(SG) strategies: with heuristic map cleaning and with a CRF-
based decision (AW+ and SG+). Having only 2 decision labels,
and guaranteed sub-modular potentials (β0, β1 ≥ 0), we used
a graph cuts-based solver [51, 52] from UGM toolbox [53]
to quickly find the optimal tampering map minimizing (8).
Parameter choice is discussed in Section V-C.

All schemes use central-pixel attribution, which requires
special handling near image borders. The remaining unclassi-
fied pixels could be filled by padding with repetition. However,
we found that better results can be obtained by padding the
input image instead (by ω/2 with a mirror reflection in each
direction). This allows to populate all pixels within the map
and prevents the adaptive-window strategy from forcibly using
only smallest windows near image borders. In practice, it
is unnecessary to move the analysis window by 1 px as
such localization resolution is beyond capabilities of PRNU
analysis. We used 8 px stride for the considered multi-scale
strategies and 4 px stride for the single-scale detectors. For
comparison with the ground-truth, all tampering maps are up-
sampled to full image size.

B. Data Set Composition

Our data set contains both synthetic and realistic forgeries
from four digital cameras: Sony α57, Canon 60D, Nikon
D7000, and Nikon D90 (Tab. I). All images were cropped
to the middle fragment of size 1920× 1080 px (2 Mpx). For
all cameras the correlation predictor was trained on 25,000
randomly chosen patches from 50 diverse images. Another
250 diverse photographs were used to generate the synthetic
and perform realistic forgeries. Images from the Sony α57
camera originate from a personal photo collection, and include
diverse images, taken in various lighting conditions, at various
ISO settings. The images were acquired in RAW format, and

TABLE I
SUMMARY OF INCLUDED DIGITAL CAMERAS

Camera # Images Source Predictor

Tampered PRNU est. quality R2

Sony α57 52 90 flat own 0.52 - 0.95
Canon 60D 27 200 natural own 0.65 - 0.86
Nikon D7000 26 200 natural RAISE 0.47 - 0.80
Nikon D90 31 200 natural RAISE 0.56 - 0.83

were converted to TIFF format using dcraw software with
default settings. The PRNU was obtained from 90 dedicated
out-of-focus flat images using the original MLE estimator
with wavelet-based denoising [54]. Images from the Canon
60D camera come from a personal photo collection. They
were acquired in RAW format and converted to TIFF with
Canon’s default software. PRNU was estimated from 200
favorable (bright, low-texture) natural images. The remaining
photographs (Nikon cameras) were taken from the RAISE
dataset [55], carefully cleaned of duplicated photos. We di-
rectly obtained TIFF images and estimated the PRNU from
200 favorable images.

In our multi-scale analysis setting, camera models contain
individual (σ0, σ1, θ) for every considered scale of analysis1.
A visualization of a multi-scale model for Sony α57 is shown
in Fig. 4. The top and middle rows show histograms of correla-
tion scores from predictor training for H0 and H1, respectively.
The bottom row shows the quality of the obtained predictor,
visualized as a 2-dimensional density plot of observed vs.
predicted correlations and measured by the R2 coefficient.

Synthetic forgeries were generated by replacing a randomly
located (with pixel-wise accuracy) square region of the input
image with a randomly chosen patch from a different camera.
In total, we generated 250 forged images per camera for each
of the following tampering sizes: 48, 64, 96, 128, 192, and

1In principle one could also extrapolate the parameters of the model from
a single-scale setting. For three considered cameras, we found the minimum
correlation between the parameters of the predictor to be 0.80 (Nikon D7000),
0.90 (Nikon D90) and 0.96 (Sony α57) among 7 considered window sizes.
However, in preliminary evaluation we obtained better results by recording
individual parameters for each analysis window size.
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Fig. 5. Results of grid search for the parameters of the alternative adaptive-
window and segmentation-guided strategies with both heuristic and CRF
decision; the chosen configuration is indicated by a red marker.

256 px. For realistic evaluation, we prepared 136 diverse high-
quality forgeries using popular photo editing software (GIMP
and Affinity Photo). The forgeries are of various size and
character and include object insertion, object removal and also
more subtle changes to existing content, like subtle shadows
or reflections, that are unlikely to be detected with PRNU
analysis. Example forgeries are shown in Fig. 11 (please
refer to supplementary materials for more examples). Ground
truth maps were generated as a pixel-wise difference between
the pristine and doctored images (cleaned using small-scale
morphological filtering, and corrected manually if necessary).

C. Parameter Selection

Parametrization of the considered multi-scale strategies is
summarized in Table II along with the values used in our
experiments. This section introduces the protocol that we
followed to choose the most important parameters.

The adaptive-window approach is controlled with two main
parameters ∆c1,∆c2. We used grid search to assess their
impact on the average F1 score on a randomly chosen subset
from our realistic forgeries. To speed up the computations,
we measured and averaged the F1 score for three thresholds
τ = 0.4, 0.5, 0.6. We used both variants with heuristic post-
processing and with CRF-based decision. The obtained results
(top row in Fig. 5) shows very similar behavior in both cases.
Finally, we chose a configuration which performs best in
both cases (with negligible loss with respect to the individual
optima). It is marked on the surface plot with a red circle.

We followed the same protocol for the segmentation-guided
strategy to asses the impact of ωmin and ∆y. In this case,
the heuristic post-processing and CRF-based decision reveal
somewhat different behavior (bottom row in Fig. 5). The for-
mer prefers values of ∆y around 20-25 and slightly improves
for larger ωmin. The latter also improves along with ωmin, but
prefers smaller pixel similarity thresholds (from 15 down to 5
for larger ωmin). Finally, we chose ∆y = 15 which seems to
be a good choice for various conditions and incurs a penalty
of only 0.006 with respect to the best observed F1 score.

TABLE II
PARAMETER SUMMARY FOR ALL CONSIDERED LOCALIZATION SCHEMES

Method Symbol Parameter Value

MSF

α decision bias -1.00
β0 default interaction strength 0.55
β1 adaptive interaction strength 5.60
φ color similarity attenuation 25
δ threshold drift 0.18

Ψmin minimum data term potential 0.001
δsep threshold drift margin 0.05
ξ1 reliability curve parameter 30
ξ2 reliability curve parameter 2.5

AW+

α decision bias -0.90
β0 default interaction strength 0.25
β1 adaptive interaction strength 3.50
φ color similarity attenuation 25

Ψmin minimum data term potential 0.001
∆c1 immediate score acceptance threshold 0.1
∆c2 secondary score acceptance threshold 0.25

SG+

α decision bias -0.5
β0 default interaction strength 2.0
β1 adaptive interaction strength 1.15
φ color similarity attenuation 25

Ψmin minimum data term potential 0.001
ωmin minimum window / segment size 64

∆y pixel similarity threshold 15
− segmentation cleaning struct. element 8-px disk

We then focused on the selection of the parameters for
the conditional random fields: tampering penalty (α); content
independent and adaptive neighborhood interaction penalties
(β0, β1); and threshold drift strength (δ). While sound inter-
pretation allows forensic analysts to fine-tune these parameters
manually, we aim to measure typical localization performance
in a fixed setting that does not require manual intervention. In
order to choose reasonable parameters, we aim to maximize
the average F1 score on a small set of example forgeries. For
best results, this training set should include diverse examples
with varied content affected by both object insertion and
removal forgeries. In our evaluation, we used the realistic
forgeries from the Sony α57 camera.

The number of parameters makes it impractical to perform
grid search with reasonable accuracy. Adoption of gradient
methods is limited due to non-trivial behavior of the threshold
drift (δ), intractable exact optimization of the problem (due
to combinatorial complexity of the partition function of the
random field), and insufficient correlation of approximations
of formal probabilistic optimization criteria with practical
localization performance measures (e.g., F1 score). We ob-
tained limited success with saddle-point approximation of a
likelihood objective [56], however, we could not guarantee
convergence to optimal parameters (with respect to either F1

score or classification accuracy).
As a result, we resort to random parameter search which rel-

atively quickly chooses reasonable values, and still allows us
to assess the impact of individual parameters. In order to speed
up processing, we used a fixed decision threshold τ = 0.5. We
sampled parameters’ values from the following search space
(chosen empirically based on preliminary experiments): α ←
U(−5, 5), β0, β1 ← |U(−0.5, 7)|+, δ ← |U(−0.025, 0.425)|+
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Fig. 6. Impact of individual parameters on the maximum achievable F1

score for τ = 0.5 for the multi-scale fusion approach: tampering penalty α
(top left); neighborhood interactions β (top right, isolated impact); threshold
drift δ (bottom left); included analysis windows (bottom right).

where the |x|+ := max(0, x) operator truncates numbers to
positive values. Setting the lower bound of the search range
slightly below zero allowed us to obtain configurations where
a given parameter is exactly 0.

In order to validate the improvement of multi-scale analysis,
we estimate the maximum average F1 score for different
numbers of available analysis windows. We start with the
commonly used 128×128 px window and successively include
smaller, and finally larger windows (see Fig. 6). Note that in
this experiment parameter selection was performed separately
for each camera. Later on, this will allow us to assess the
penalty for using parameters chosen for the Sony α57 camera.
For each camera and each set of analysis windows, we sampled
1,500 random parameter configurations. The obtained results
are shown in Fig. 6. It can be observed that the performance
consistently improves as successive analysis scales are in-
cluded. In case of Nikon cameras, we observed saturation
of the F1 scores, which no longer improve after including
windows larger than ω = 128. However, larger windows
proved beneficial for the remaining cameras and therefore we
decided to use the whole set in the remaining experiments.

In order to assess the impact of individual parameters, we
sampled 10,000 random parameter configurations (Sony α57,
all analysis windows). For each parameter, we quantize its
values and measure the maximum achievable F1 score over
all remaining parameters, e.g., for quantized value αc :

F1(αc) = max
β0,β1,δ

{F1(α, β0, β1, δ) : K(α) = αc} , (17)

where K denotes the utilized quantizer. In order to better visu-
alize the behavior, we plot a moving average of the obtained
samples. For neighborhood interaction strengths β, we show
their isolated impact, i.e., when the other type of interactions
in minimized (β < 0.25). The obtained results (Fig. 6)
show clear preference of the tampering penalty α towards -
1.25 and the threshold drift towards 0.15. The neighborhood
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Fig. 7. Localization performance for synthetic forgeries: (a) compares
individual single-scale detectors; (b) compares two single-scale detectors with
best performance for small and for large forgeries; (c) shows the impact of
the CRF-based decision for the segmentation-guided and adaptive-window
strategies; (d) compares the multi-scale and single-scale detectors.

interaction strengths exhibit slightly more complex behavior.
Firstly, both types interaction are advantageous. However,
we can observe that the default interaction strength prefers
smaller values (up to approx. 2.5). The adaptive interaction
strength not only prefers larger values (greater than 4) but also
allows to reach better results. Finally, the interaction strengths
are negatively correlated, and setting larger value for one
of them will typically require making the other one smaller.
Hence, the obtained results confirm our previous intuition that
introduction of content-dependent neighborhood interactions
should be beneficial (see Fig. 2) as it will allow to match
the shape of the inserted objects more accurately2. We did
not observe adverse impact for more subtle object removal
forgeries.

The above description addressed CRF parameter selection
for the multi-scale fusion approach. We followed an analogous
procedure for the remaining strategies. The obtained final
parameters (Table II) will be subsequently used for evaluation
on both synthetic and realistic forgeries for all cameras.

D. Localization Performance for Synthetic Forgeries

Evaluation on synthetic forgeries reveals the limits of the
localization capability for tampering of a given size. Fig. 7a
shows how the localization performance changes with the
analysis window size for the Sony α57 camera (results for
the remaining cameras are similar and are included in supple-
mentary materials). As a baseline for comparison, we show

2Note that even for the object insertion forgeries, the actual ground truth
mask typically does not follow exactly the edges of the object. In most cases,
an additional space around the object needed some post-processing to make
the forgery more visually appealing.



TABLE III
BEST AVERAGE F1 SCORES [0-100] OF INDIVIDUAL DETECTORS FOR SYNTHETIC SQUARE FORGERIES OF VARIOUS SIZE.

detector / window size
Tampered area size [px]

Sony A57 Canon 60D Nikon D90 Nikon D7000

48 64 96 128 192 256 48 64 96 128 192 256 48 64 96 128 192 256 48 64 96 128 192 256

32 px window 9 10 18 20 20 26 10 14 20 21 31 34 14 14 23 26 33 33 7 11 15 19 26 31
48 px window 9 12 21 24 25 33 11 18 27 31 41 47 11 16 28 33 38 41 7 15 22 27 37 42
64 px window 9 11 24 29 34 43 9 15 32 38 49 56 8 13 29 37 44 48 5 15 27 34 44 49
96 px window 3 8 25 36 50 58 3 8 22 35 57 66 2 8 24 38 50 55 2 7 18 32 49 59

128 px window 1 4 17 35 55 63 1 3 14 23 56 67 1 2 13 28 48 57 1 3 12 25 47 61
192 px window 0 1 5 17 42 58 0 1 2 8 30 53 0 1 3 10 30 44 0 1 3 11 26 48
256 px window 0 0 2 8 24 43 0 0 1 2 10 28 0 0 1 4 17 30 0 0 1 4 16 31

multi-scale fusion 17 20 38 50 64 71 14 21 34 43 65 74 10 17 33 45 56 62 11 18 27 39 57 67

segmentation-guided (heuristic) 10 20 36 46 58 66 8 15 30 38 58 68 5 11 25 40 51 58 5 16 32 45 57 65
segmentation-guided (CRF) 10 21 39 52 70 80 8 15 31 40 66 78 2 7 20 35 56 70 3 14 30 46 69 80

adaptive-window (heuristic) 9 12 23 34 48 59 11 16 28 34 49 59 7 12 24 33 44 51 6 12 21 29 41 53
adaptive-window (CRF) 13 17 30 41 55 66 12 16 31 39 57 67 7 10 22 33 42 52 7 12 22 31 47 61
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Fig. 8. Histograms of peak F1 scores for individual images from the Nikon
D7000 camera in the synthetic forgery test for the multi-scale fusion approach
(green) and the conventional single-scale detector with a 128 px window (red).

the 128 px and 64 px windows which obtain best results for
large and small forgeries, respectively. While small windows
give a chance to detect smaller forgeries, they are less reliable
and perform poorly for large tampering. Complete numerical
results for all cameras are collected in Table III.

The considered multi-scale strategies combine the benefits
of small-scale and large-scale analysis and consistently outper-
form the conventional single-scale method across all tampering
sizes. The adaptive-window and segmentation-guided strate-
gies clearly benefit from replacing standard heuristic post-
processing with a CRF (Fig. 7c). Introduction of neighborhood
dependencies offsets the problems stemming from inaccurate
segmentation or scattered small false positives.

Overall, we observed the most stable improvement for the
multi-scale fusion strategy, which nearly always performed
better than any single-scale detector. While for large forg-
eries the best results were obtained by the segmentation-
guided strategy, it tended to deteriorate in some small forgery
cases (e.g., small forgeries for Nikon D90). Compared to the
standard ω = 128 window, the above multi-scale strategies
always delivered superior performance. Overall, the smallest
improvement was observed for the adaptive-window strategy.
It typically yielded similar performance as the best single-
scale detector. Hence, it also brings some advantages over
conventional single-scale analysis.

In order to clearly illustrate potential detectability of small
forgeries, we show a histogram of the peak F1 scores for

both the conventional single-scale 128 px window and for the
proposed multi-scale fusion approach (Fig. 8). In favorable
conditions (bright, low-texture images), thanks to incorpo-
ration of small-scale windows, the multi-scale approach can
reliably detect (F1 ≈ 0.9) forgeries as small as 64 × 64 px.
However, it brings significant benefits for all tampering sizes.

The benefits of all multi-scale strategies can also be ob-
served in the receiver operation characteristics (Fig. 9). For the
sake of presentation clarity, we show only the curves for two
single-scale detectors (64×64 px and 128×128 px windows).
Note that our parameter selection procedure did not involve
explicit optimization of ROC performance. While the F1 score
is obviously correlated with classification accuracy, it should
be possible to further improve the curves by properly adapting
the optimization criterion.

E. Localization Performance for Realistic Forgeries

The obtained localization performance for realistic forgeries
is summarized in Fig. 10. The best single-scale detectors used
the ω = 64 window (Canon 60D) or the ω = 96 window (other
cameras). Improvement over the commonly used ω = 128
ranges from minor to significant (Canon 60D). Fig. 10 shows
both aggregated performance statistics (ROC curves, average
and peak F1 scores) and detailed image-level comparison
(scatter plots of peak F1 scores). The scatter plots always use
the best single-scale detector as a baseline.

Similarly to synthetic evaluation in Section V-D, the pro-
posed multi-scale strategies deliver considerable benefits. The
most stable improvement can be observed for the multi-
scale fusion approach. Inspection of scatter plots (4th column)
clearly shows that the localization performance improves for
most cases (note that the improvement with respect to the com-
monly used ω = 128 window is even greater). We observed
only a few cases with considerably worse results (images
DPP0122, DPP0251, and DPP0445 from the Canon 60D
camera). Further inspection revealed that they were caused by
confident false positives in medium scale candidate maps. As
expected, the errors were observed in highly-textured areas of
low or medium brightness and can be attributed to inadequate
performance of the correlation predictor.

Similarly to synthetic evaluation, the best results were often
provided by the segmentation-guided strategy, especially for
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Fig. 9. Receiver operation characteristics from the detection of synthetic square forgeries by all of the considered multi-scale strategies and two representative
single-scale detectors with the 64× 64 px and the 128× 128 px windows; for more detailed results, please refer to supplementary materials.

highly contrasting object insertion forgeries. However, this
approach has clearly suffered in more challenging conditions.
Inspection of scatter plots (5th column) reveals significantly
scattered results with many cases of performance deterioration.
We observed that poor results are often caused by highly
detailed objects with small and dark areas of irregular shape.
Similar problem occur in irregularly shaped saturated areas.
Such cases are difficult to handle for both segmentation
algorithms and the correlation predictor. However, we expect
that better results could be obtained with a predictor capable
of handling arbitrary irregular shapes of the segments.

Compared to synthetic evaluation, we observed somewhat
better performance of the adaptive-window strategy. In this
experiment, it delivered more competitive results with consid-
erable improvement over the standard single-scale approach
(scatter plots are available in supplementary materials). Sim-
ilarly to the multi-scale fusion approach, we observed more
consistent results than for the segmentation-guided strategy.

In order to assess sensitivity of the localization performance
to the choice of CRF parameters, we compare the obtained

scores to the results from analysis window size selection
(Fig 6) where we sought the best performance for each camera
separately. Table IV compares the best average F1 score for the
adopted parameter choice with the best configuration observed
during our random search, and with a configuration where
all parameters are zeroed. While we can observe significant
performance improvement with respect to the zeroed configu-
ration, the gap from the best parameters is much smaller. While
this demonstrates that further improvement can be achieved by
fine-tuning the parameters individually, good performance can
be expected from a universal parameter configuration.

Example tampering localization results for all strategies
are shown in Fig. 11. Successive rows are labeled vertically
with filenames of individual forgeries. The figure shows both
tampering probability maps and color-coded decision maps.
In order to clearly illustrate the best localization potential,
the thresholds were chosen individually for each image and
correspond to the best achievable F1 score. The examples
are ordered by their peak F1 score improvement of the
MSF strategy with respect to the single scale detector with
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Fig. 10. Tampering localization performance for realistic forgeries; notation: MSF - multi-scale fusion; AW (AW+)- adaptive-window strategy with heuristic
(CRF-based) decision; SG (SG+) - segmentation-guided strategy with heuristic (CRF-based) decision.

TABLE IV
LOCALIZATION PERFORMANCE OF THE MULTI-SCALE FUSION STRATEGY

FOR VARIOUS CHOICES OF CRF PARAMETERS.

Camera Average F1 scores for:
zeroed param. chosen param. best param.

Sony α57 0.612 0.671 0.677
Canon 60D 0.539 0.607 0.627
Nikon D90 0.440 0.569 0.571
Nikon D7000 0.537 0.610 0.638

ω = 96 which performed best overall. Images with the
greatest performance gain are shown on top. Four examples
at the bottom correspond to deteriorated performance. The
included examples show all of the mentioned phenomena:
superior shape detection of the segmentation-guided strategy
in favorable conditions (e.g., DSC07311); problems of the
segmentation-guided strategy with subtle object removal and
high-detail areas (DSC07004 or DPP0086); lack of improve-
ment from segmentation-guidance for object removal forgeries
(DSC05748); improved detection of small forgeries by the
adaptive window strategy (DSC05810); content-guided prop-
agation for the multi-scale fusion strategy (DSC06083). For
more examples please refer to supplementary materials.

F. Robustness Evaluation

In this experiment, we measure the impact of lossy JPEG
compression on the best average F1 score. We consider a
joint data set of realistic forgeries from all considered cameras
(136 images in total). We generated 6 new versions of every
image for JPEG quality factors 75, 80, 85, 90, 95, and 100.
We used a common setting with 4:2:0 chroma sub-sampling
(horizontal and vertical resolutions of Cb and Cr channels are
halved). We used the same detectors (with the same settings)
as in previous experiments. Camera models were adjusted
by training separate predictors for different quality levels.
The PRNU estimate k̂ was left unchanged (trained on TIFF
images). During localization, the JPEG quality level was read
from meta-data and used to choose the relevant predictor.

The obtained results are shown in Fig. 12. Individual single-
scale detectors (for different window sizes ω) are compared
in (b). Selected best detectors (ω = 96 and ω = 128) are
compared to multi-scale strategies in (a). We can observe that
the standard ω = 128 detector achieves the best overall single-
scale performance. While the ω = 96 window yielded better
results on TIFF and JPEG 100 images, it then quickly de-
teriorated with increasing compression strength. The smallest
scales are no longer useful below quality 90-95 (depending
on image content). Interestingly, we observed improvement of
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Fig. 11. Example tampering localization results; color coding: white - detected tampered regions (tp); red - undetected tampered regions (fn); cyan - detected
authentic regions (fp); black - undetected authentic regions (tn); for more examples, please refer to supplementary materials.

localization performance for the largest windows. An example
result illustrating this phenomenon for ω = 256 is shown
in (d). Hence, once small-scale windows loose reliability, the
multi-scale fusion approach can still extract useful information
from windows larger than ω = 128.

It can be observed that our multi-scale fusion strategy
delivers the best results with consistent benefits for all JPEG
quality levels. While the greatest improvement can be expected
for high-quality JPEGs or uncompressed TIFF images, it
remains beneficial also for higher compression strengths. The
remaining adaptive-window and segmentation-guided strate-
gies delivered worse robustness with smaller gains and less

consistent results. Fig. 12(c)-(g) show changes of tampering
localization results for an example forgery (image DSC07311
from Fig. 11) for all of the considered JPEG quality levels.

VI. CONCLUSIONS

In this study, we evaluated 3 strategies for multi-scale anal-
ysis in PRNU-based tampering localization. We considered
dynamic window size selection, computation of the correlation
over coherent image segments, and fusion of separate response
maps obtained with various window sizes.

Our segmentation-guided strategy was inspired by recent
works based on manual segmentation and guided filtering [2,
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Fig. 12. Impact of lossy JPEG compression on tampering localization
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(a) multi-scale strategies vs. selected single-scale detectors; (b) single-scale
strategies on various scales of analysis; (c) - (g) tampering probability maps
for an example forgery (image DSC07311).

3]. The proposed approach is fully automatic and uses a CRF
to introduce dependencies between neighboring regions of
the image. Such content-guided approaches are particularly
beneficial when the forgery involves insertion of a highly
contrasting object, especially on a bright and flat background.
In such conditions, we can detect even small objects, and
precisely delineate their boundaries. However, problems occur
for more complex and subtle forgeries (e.g., involving object
removal), especially in highly textured areas where presence
of many edges disrupts content segmentation.

In contrast to a similar evaluation of the guided-filtering ap-
proach [3], we obtained consistent performance improvement
for all tampering sizes. The improvement may partly stem
from more precise control over the scope of the correlation
statistics and adaptation of conditional distribution models.
However, further work is needed. While variances of the
distributions can be adjusted, it remains an open problem
to generate reliable predictions for irregular image segments.
We also observed that despite explicit care for potentially
unreliable regions in the predictor, confident false positives
still occur. At the moment, it may be beneficial to use a sep-
arate detector and either cross-reference the results or include
this information directly in the localization algorithm, e.g., as
reliability maps, like in our multi-scale fusion approach.

Overall, our multi-scale fusion approach proved to be the
most versatile. It yielded the most stable improvement in
various conditions and always provided significant improve-
ment over the commonly used single-scale detector with ω =
128. While the alternative adaptive-window approach could
also improve localization performance, it performed worse

in general and proved to be more vulnerable to correlation
modeling errors on smaller scales. Availability of candidate
maps from multiple-scales gives the fusion approach more
information and flexibility. Finally, introduction of content-
dependent neighborhood interactions can yield similar benefits
as explicit use of image segmentation. It not only delivers
superior shape representation, but can also be easily used with
arbitrary forensic detectors. In our experiments, it proved to
be beneficial for all considered localization strategies.
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