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Abstract—While it is commonly known that successful forensic
detectors should combine clues from various forensic features,
unsupervised multi-modal tampering localization is still an open
problem. State-of-the-art fusion methods perform simple pixel-
wise combination of the input tampering maps. In this study, we
show that pixel-wise combination is sub-optimal and successful
fusion needs to model dependencies between neighboring pixels
and exploit the content of the tampered image. We evaluate two
methods based on conditional random fields and demonstrate
that they can exploit image content and precisely delineate the
shape of the forgery. In contrast to existing methods based on
explicit image segmentation, such an approach does not suffer
from subtle object removal forgeries where meaningful segments
do not exist. We also demonstrate that existing performance mea-
sures are insufficient to accurately assess tampering localization
performance. Further work in this direction is needed.

Index Terms—digital image forensics; content forgery; tam-
pering localization; decision fusion; random field models; photo-
response non-uniformity; color-filter array

I. INTRODUCTION

Reliable forensic analysis should incorporate multiple de-
tectors sensitive to diverse traces of prospective forgeries.
Individual detectors’ responses can be combined into a single,
more reliable decision. In addition to classical methods, like
majority voting, the problem can also be addressed with so-
phisticated frameworks based on the Dempster-Shafer theory
of evidence (DSTE) [1] or fuzzy logic [2]. Such frameworks
deal with uncertainty and compatibility of candidate decisions
in a systematic way by defining tables of the expected (and
unexpected) combinations of the traces. Use of supervised
learning techniques is discouraged due to poor scalability.

Forensic decision fusion has been studied in depth only
for tampering detection, and its extension to unsupervised
tampering localization is still an open problem. State-of-
the-art tampering map fusion methods are based on pixel-
wise application of simple combination rules [3, 4]. A recent
evaluation found that naive map summation and product fusion
deliver the best performance [5]. Early results based on the
DSTE framework are available in [6], but still rely on pixel-
wise application of this combination rule.

The diversity of forensic traces / detectors clearly suggests
that a naive pixel-wise approach is suboptimal. The problem
can be illustrated (Fig. 1) by comparing the output of two
popular detectors based on extremely different analysis win-
dows: a CFA detector [7] (with 8 × 8 px window), and a
PRNU detector [8] (128 × 128 px). Large-window detectors

tampering probability (CFA, 8 px window) tampering probability (PRNU, 128 window)

Fig. 1. Detected object shape mismatch in tampering probability maps from
forensic detectors operating on different scales of analysis.

yield coarse shapes and no pixel-wise combination rule can
fuse them optimally with a small-window detector. For best
performance, the detected regions should be cross-referenced
with objects from the image - an inevitable next step of a
human forensic analyst.

Exploitation of image content to guide tampering localiza-
tion is a still an open problem. The first attempts extracted
forensic features from image segments instead of typically
used square windows [9]. Assuming reliable manual segmen-
tation is available, it becomes possible to detect even small
forgeries with detectors that typically require large analysis
windows, e.g., the PRNU detector [10]. However, such an
approach is difficult to use in practice - in particular in an
unsupervised setting. The main challenges involve not only
proposition of semantically meaningful objects in the image
but also handling of subtle object removal forgeries with no
clear object boundaries. A recently proposed solution involves
the use of guided image filtering [11] which weights samples
in the correlation statistics by perceptual similarity.

In this study, we evaluate another approach based on condi-
tional random fields (CRF) with content-dependent interaction
potentials. Analogous adaptive terms are used in state-of-the-
art image segmentation schemes [12]. We will demonstrate
that such an approach can accurately delineate even complex
shapes of inserted objects, and does not suffer from subtle
forgeries involving object removal. Hence, it solves one of
the main challenges in the exploitation of image content in
unsupervised tampering localization. We will also demonstrate
that due to the limitations of existing performance assessment
protocols, the benefits of such methods are difficult to measure
reliably, indicating the need for future research.

Our evaluation addresses the problem of multi-modal deci-
sion fusion in an unsupervised localization setting. We assess
the localization performance on high-quality realistic forgeries,
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and include two popular detectors operating on different
scales. We show that adoption of CRF-based models warrants
a significant performance improvement over existing pixel-
wise approaches with additional benefits of straightforward
image content exploitation.

This paper is organized as follows. In Section II we briefly
introduce the adopted forensic detectors. In Section III we
describe the considered decision fusion methods and the
structure of the random fields. Our experimental evaluation is
presented in detail in Section IV. We conclude in Section V.
Supplementary materials and our dataset are available online:
http://kt.agh.edu.pl/∼korus/publications/2016-wifs.

II. TAMPERING LOCALIZATION METHODS

In this section, we briefly introduce the considered CFA [7]
and PRNU detectors [8]. We configured both methods to
yield real-valued tampering probability maps of the same size
(resolution of 8× 8 px blocks).

A. Detection of Color Filter Array Artifacts

Virtually all consumer-level digital cameras use a mono-
chrome imaging sensor. Capturing color images requires a
color filter array in front of the sensor and a demosaicing step
to produce full-frame RGB images. As a result, an authentic
digital photograph is expected to exhibit consistent periodic
interpolation artifacts. The considered detector [7] compares
prediction error within interpolated pixels against acquired
pixels. It operates on small, non-overlapping image blocks
(8×8 px for best performance). In order to improve elimination
of false positives, we reset the scores of saturated blocks.

B. Detection of Photo-Response Non-Uniformity Artifacts

Imperfections of the imaging sensor’s manufacturing pro-
cess introduce minor variations in the sensitivity of individ-
ual pixels. Inconsistencies of this noise in different image
regions indicate potential tampering. The detector computes
correlation of a previously obtained noise signature with
its estimate from the investigated image [8]. In tampered
areas, the expected correlation is zero; in authentic ones, the
expected correlation changes depending on the image content.
A correlation predictor uses local image features to estimate
the expected correlation, and then the detector can compute the
probability of tampering based on Bayesian analysis (see [13]
for a detailed description and source code).

For reliable statistics, validation of the PRNU signature
requires large analysis windows (e.g., 128 × 128 px [8]).
Hence, the windows are overlapping, and the obtained tam-
pering probability is attributed to the central pixel only. In our
work, we can use a different detector to eliminate prospective
false positives, and therefore use analysis windows of size
64× 64 px to minimize mismatch between the detectors.

III. DECISION FUSION METHODS

The goal of a fusion procedure is to generate a single
binary tampering map based on multiple candidate tampering
probability maps (possibly by exploiting the image content I):

(
{c(d) ∈ [0, 1]N : d ∈ D}, I

)
→ t ∈ {0, 1}N (1)

where D is a set of available detectors; in our study D =
{cfa, prnu}. We assume that the input maps are of the same
size N = w×h. For notation simplicity, we address individual
pixels with a single index (i.e., ti denotes the i-th pixel of t).

A. Pixel-wise Combination Rules

The most straightforward approach fuses the input maps
by pixel-wise application of a combination rule. A recent
study concluded that naive map summation and product fusion
yield the best results [5]. Therefore, we consider the following
combination rules as a baseline for performance comparison:
sum, product, and disjunction. Let τ denote the decision
threshold and the tilde operator denote x̃ = 1 − x. The sum
fusion resolves to:

ti =
(
c(cfa)
i + c(prnu)

i

)
/2 > τ . (2)

The product fusion is defined by:

ti =
(
c(cfa)
i c(prnu)

i

)(
c(cfa)
i c(prnu)

i + c̃(cfa)
i c̃(prnu)

i

)−1

> τ . (3)

The disjunction fusion is defined by:

ti =
(
c(cfa)
i > τ

)
∨
(
c(prnu)
i > τ

)
. (4)

Additionally, we consider an empirical fusion method where
the combination rule is learned from data. We quantize candi-
date tampering probabilities into 8 bins, and count occurrences
of positive & negative ground truth labels within each bin.
Hence, the rule is defined by a 8 × 8 array with empirical
probabilities; the array is averaged with its transposed version
for symmetry, and interpolated by local regression smoothing
for generalization to arbitrary real-valued inputs.

For all pixel-wise combination rules, we post-process the
resulting binary maps with heuristic cleaning. We used mor-
phological opening with a disk-shaped structural element (SE)
of size 15 × 15 px. For the disjunction rule we consider an
additional variant of the rule which exploits the possibility
of customizing heuristic cleaning for different detectors. The
variants are referred to as common cleaning (CC) and inde-
pendent cleaning (IC), respectively. In the latter, the PRNU
map is cleaned with a larger SE (31× 31 px - quarter of the
window size) and the eroded shape of the detected region is
recovered by morphological dilation (19× 19 px SE).

B. Modeling Neighborhood Interactions

Conditional random fields constitute a popular approach
to modeling neighborhood interactions in computer vision
and image processing [14]. In such a model, the decisions
for individual pixels are no longer independent, but take
into account the decisions for their neighbors. Recently, a
Markov random field has been used to improve the localization
performance of the PRNU detector [15]. Here, we consider
extended models where the potentials are constructed in a
content-dependent way [12, 13].



The localization problems resolves to finding a labeling t
of image blocks that minimizes the following energy function:

E(t) =
1

|D|
∑
d∈D

N∑
i=1

ψτ (c
(d)
i |ti) +

N∑
i=1

∑
j∈Ξi

φp(ti, tj) (5)

where ψτ , and φp denote the unary and pairwise potentials,
respectively, and Ξi denotes the neighborhood of pixel i. We
use the approach from [16] to construct the unary potentials:

ψτ (c|t) = −log max (Ψmin,Ψτ (c|t)) , (6)

with Ψmin ∈ [0, 1] and:

Ψτ (c|t) =

{
1− c

2τ for t = 0,

1 + c
2(1−τ) −

1
2(1−τ) for t = 1,

(7)

where τ ∈ (0, 1) is a quasi-threshold that equalizes potentials
for both decisions, i.e., ψτ (τ, 0) = ψτ (τ, 1). Setting a minimal
value Ψmin (0.001 in our experiments) prevents the nodes from
becoming fixed to certain decisions (due to infinite energy).

The pairwise potentials penalize differences in decisions
among neighboring pixels. We consider two versions of neigh-
borhood interactions. In a grid CRF we use 8-nearest neigh-
bors as the pixels’ neighborhood Ξi and pairwise potentials of
the form φp(ti, tj) = βij |ti − tj | where:

βij = β0 + β1exp
(
−|Ii − Ij |

2

2θ2
2

)
. (8)

The parameters β0 and β1 denote the default and the content-
dependent interaction strengths. The latter fades off exponen-
tially with L2 distance between pixels’ RGB vectors Ii and Ij .
The desired pixel similarity is controlled with parameter θ2.
We also consider a dense CRF spanned over a fully connected
grid, i.e., with Ξi = {1, . . . , N} \ i, which uses Gaussian
potentials of the form φp(ti, tj) = βij |ti − tj | where:

βij = β0exp
(
−|pi − pj |

2

2θ2
0

)
+ (9a)

+ β1exp
(
−|pi − pj |

2

2θ2
1

− |Ii − Ij |
2

2θ2
2

)
(9b)

where pi denotes a vector of (x, y) coordinates of the i-th
pixel on the image grid. In both models, the neighborhood
interaction terms encourage nearby similar pixel to assume
the same label. Hence, the CRF-based fusion methods do not
require heuristic map post-processing.

IV. EXPERIMENTAL EVALUATION

Our evaluation involves tampering localization for high-
quality realistic forgeries. Using modern photo editing soft-
ware, we manually created a dataset of 120 diverse forgeries
involving not only object insertion and removal, but also more
subtle changes to the image content, not necessarily detectable
by the considered detectors (e.g., shadows or reflections
of inserted objects). The images originate from 3 cameras:
Sony α57 (personal photo collection), and Nikon D90, and
D7000 (RAISE dataset [17]). We used TIFF images (di-
rectly acquired from [17] or converted with dcraw) of size

TABLE I
EMPIRICALLY CHOSEN PARAMETERS FOR THE CRFS.

β0 β1 θ0 θ1 θ2

grid 0.25 2.00 - - 25
dense 3.75 3.00 3.5 10 20

1920 × 1080 px (cropped from the middle). The PRNU was
obtained with the standard MLE estimator [18] from 200
favorable natural images (Nikon) or from 90 dedicated out-of-
focus flat images (Sony). The predictor was trained on 25,000
patches from 50 diverse images.

Finally, we analyzed the tampered images with the CFA and
PRNU detectors (Section II). Having only 2 decision labels,
and guaranteed sub-modular potentials (β0, β1 ≥ 0), we used
a graph cuts-based solver [19] from the UGM toolbox [20] to
quickly find the optimal tampering map for the grid CRF. For
the dense CRF we used a recently proposed efficient solver
based on iterative mean-field approximations [21].

A. Parameter Selection & Evaluation Protocol

The grid CRF is controlled by 3 parameters (β0, β1, θ2)
and the dense CRF by 5 parameters (β0, β1, θ0, θ1, θ2). The
parameters have a sound interpretation and reasonable values
may be chosen empirically by trial and error on a few
representative images (Table I). However, in order to assess the
sensitivity of the localization performance, we also consider
an automated procedure that maximizes the average F1 score:

F1 =
2· tp

2· tp+ fn+ fp
, (10)

where tp, fn, fp denote the observed true positives, false
negatives, and false positives. Due to limited number of test
images, we resort to cross-validation with random-sampling:

1) Split the test set randomly into 25% : 75% for training
and testing, respectively.

2) Use random parameter sweep (for the dense CRF) or
grid search (grid CRF) to find the parameters maximiz-
ing the average F1 for the training set.

3) Test the best parameters on the remaining images.
4) Repeat steps 1-3 for M random splits of the dataset.
In random parameter sampling we used 1,000 attempts

with β ← U(0, 10) and θ ← U(0.1, 50). In grid search,
we uniformly sampled 256 points from [0, 3] × [0, 3] for β
and kept the empirically chosen θ for simplicity. We used
M = 10 for the dense CRF and M = 30 for the grid
CRF. When testing, we sweep the threshold over 49 values
uniformly chosen from (0, 1). To speed up training, we used 19
thresholds and approximated the curve by cubic interpolation.

B. Empirical Evaluation Results

The obtained tampering localization results are collected in
Fig. 2. Both the ROC curves (top left) and the average F1

scores (top right) clearly show significant improvement of the
decision fusion methods over individual detectors, and of the
CRF-based fusion over standard pixel-wise methods.
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sum 0.57
product 0.61
disjunction (CC) 0.57
disjunction (IC) 0.60
empirical 0.61
grid CRF 0.69
dense CRF 0.68

CFA 0.44
PRNU 0.49

Fig. 2. Tampering localization performance for the considered decision fusion methods with empirically chosen parameters of the CRFs: the receiver operation
characteristics (top left); the average F1 score vs. decision threshold τ (top right); and comparison of peak localization performance for individual images:
grid CRF vs. dense CRF (bottom left); grid CRF vs. pixel-wise product fusion (bottom middle); empirical vs. product pixel-wise fusion (bottom right).
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Fig. 3. Visualization of combination rules; the xy axes correspond to the
input candidate scores; brightness corresponds to the output score.

Apart from somewhat inferior results of the sum and dis-
junction (CC) fusion, we observed similar performance for
most pixel-wise methods. The disjunction rule could further
benefit from individualized post-processing - especially, when
larger false alarm rates are acceptable. Overall, the best pixel-
wise performance was obtained by the empirical and product
fusion, with slight advantage of the former. Although the
measurable improvement (both F1 and accuracy-wise) was
negligible, we observed important qualitative differences. By
examining contours of the combination rule (Fig. 3) we can
clearly see that the product fusion is in fact not an accurate
model. Despite certain shape similarities to the empirical
fusion near (1,1), the rules diverge as the candidate scores
decrease. When any of the candidate scores is zeroed, the prod-
uct fusion always deems the pixel authentic which is clearly
a bad assumption. Nevertheless, the performance penalty for
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Fig. 4. Localization performance stability for CRF-based fusion: error bars
correspond to standard deviation of the F1 scores; shaded areas corresponds
to the worst and the best observed ROC curves.

this violation seems to be negligible in practice since zeroed
values are rare. Finally, we observed that the empirical fusion
provides a certain visual advantage - uncertain regions are
better attenuated, which is also reflected in the maximum of
F1(τ) shifted towards lower τ .



tampered image CFA PRNU sum fusion product fusion empirical fusion grid CRF dense CRF binary disjunction

Fig. 5. Example tampering localization results; binary decision maps correspond to the best map (F1 score-wise) over all possible choices of the decision
threshold and are color coded: true positive (white), false negative (red), false positive (cyan), true negative (black).

While incorporation of neighborhood interactions yields
significant performance improvement over conventional pixel-
wise methods, we did not observe major differences between
the CRF models. While we obtained slightly better ROC
curves for the grid CRF, the F1 evaluation shows no difference
between the models. More detailed analysis of individual cases
also revealed no improvement. The scatter-plot of individual
per-image peak F1 scores1 (bottom left plot in Fig. 2) confirms
that there are no clear advantages of either of the methods.
This can be contrasted with clear benefits of the grid CRF
over product fusion (bottom middle plot in Fig. 2).

Performance stability analysis also reveals no significant
differences between the CRF models (Fig. 4). We followed
the cross-validation procedure described in Section IV-A. The
obtained results are nearly identical as for the hand-picked
parameters, and show stable improvement over pixel-wise
methods, and minor ROC advantage of the simpler grid CRF.

Example tampering localization results are shown in Fig. 5.
For the product, sum, and empirical fusion we show real-
valued localization maps. For the remaining fusion methods,
we show color-coded binary decision maps, corresponding to
the best observed localization (F1 score-wise) over possible
choices of the decision threshold τ . It can be observed that
CRF-based methods yield the best results with superior shape
representation, even for small details of the inserted objects.

1We define peak F1 scores as the maximal F1 score for each test image
(over all possible decision thresholds τ ).

C. Limitations of Localization Performance Measures

Visual inspection of individual forgeries clearly demon-
strates the efficiency of the adopted content-dependent CRFs.
Boundaries of inserted objects are closely followed, and even
small details of their shapes are accurately detected. At the
same time, the method does not suffer in the presence of
more subtle object removal forgeries. Fig. 6 illustrates this
for two example forgeries and compares the results of local-
ization guided by the inserted object (1st column) and by the
background only (2nd column). The latter map is similar to
a simpler grid CRF without content-dependent interactions2

(β0 = 0, β1 = 1.8, 3rd column). For reference, the results of
pixel-wise product fusion are shown in 4th column.

Despite significant differences in shape representation, we
observed that currently used measures for evaluation of tam-
pering localization schemes deliver inadequate results. Adop-
tion of content dependencies often introduces either minimal
improvement (bottom row) or even significant deterioration
(top row) of the measurable performance (both in terms
of F1 scores and accuracy A) despite clearly more precise
detection. This is particularly well visible on small details of
the tampered shapes, e.g., the roof or the back of the boat,
which are easily removed by conventional content-independent
neighborhood interactions. In part, the problem can be at-
tributed to collateral damage, i.e., pixels with different values

2 We repeated our evaluation with a simplified grid CRF without content
dependencies. Quantitatively, we obtained nearly the same results as with
adaptive interactions - both in terms of ROC and F1 performance.



CRF guided by tampered image (F1 = 0.664 / A = 0.749) CRF guided by orignal image (F1 = 0.806 / A = 0.838) CRF with no content guidance (F1 = 0.812 / A = 0.842) pixel-wise product fusion (F1 = 0.844 / A = 0.866)

CRF guided by tampered image (F1 = 0.820 / A = 0.851) CRF guided by orignal image (F1 = 0.804 / A = 0.844) CRF with no content guidance (F1 = 0.805 / A = 0.840) pixel-wise product fusion (F1 = 0.799 / A = 0.841)

Fig. 6. Impact of content-dependency for two example forgeries (grid CRF): note significant deterioration of measurable localization quality (F1 score /
accuracy A) in the first example, and infinitesimal improvement in the second when the inserted object is used for guidance; note also similar results when no
content guidance is used (3rd column) and when background content is used for guidance (2nd column); Legend: detected region (green); ground truth (red).

but the same semantic content (e.g., additional border around
the inserted objects caused by image blending). This clearly
shows the need for more accurate evaluation metrics.

V. CONCLUSIONS

In this study, we focused on fusion of diverse tampering lo-
calization maps, obtained from forensic detectors operating on
different scales of analysis. We used conditional random fields
to model dependencies between neighboring image blocks in a
content-adaptive way. Such an approach significantly improves
the detection of complex shapes, and - in contrast to existing
methods based on image segmentation - does not suffer from
subtle object removal forgeries.

We have also shown that existing metrics for evaluation
of tampering localization performance are inadequate. They
ignore spatial relationships of detected objects, and are not
accurate enough to reflect differences between rough and
precise object representation. This clearly shows the need for
further research towards better evaluation protocols.

While our framework supports an arbitrary number of
detectors, it expects unified tampering probability maps as an
input. Further work is required to include arbitrary detectors,
possibly operating on different domains (e.g., segments or
super-pixels) or incapable of probabilistic output.

ACKNOWLEDGMENT

The research leading to these results was partly supported
by NSFC (61572329, 61402295), Shenzhen R&D Program
(GJHZ20140418191518323, JCYJ20160328144421330), and
Guangdong NSF (2014A030313557).

REFERENCES

[1] M. Fontani et al., “A framework for decision fusion in image forensics
based on Dempster-Shafer theory of evidence,” IEEE Trans. Inf.
Forensics Security, vol. 8, no. 4, 2013.

[2] M. Barni and A. Costanzo, “Dealing with uncertainty in image forensics:
a fuzzy approach,” in Proc. of IEEE Int. Conf. on Acoustics, Speech
and Signal Processing, 2012.

[3] L. Gaborini et al., “Multi-clue image tampering localization,” in Proc.
of IEEE Int. Workshop on Inf. Forensics and Security, 2014.

[4] D. Cozzolino et al., “Image forgery localization through the fusion of
camera-based, feature-based and pixel-based techniques,” in Proc. of
IEEE Int. Conf. on Image Processing, 2014.

[5] D. Cozzolino et al., “Multiple classifier systems for image forgery
detection,” in Image Analysis and Processing, vol. 8157 of LNCS. 2013.

[6] P. Ferrara et al., “Unsupervised fusion for forgery localization exploiting
background information,” in Proc. of IEEE Int. Conf. on Multimedia &
Expo Workshops, 2015.

[7] P. Ferrara et al., “Image forgery localization via fine-grained analysis of
cfa artifacts.,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 5, 2012.

[8] M. Chen et al., “Determining image origin and integrity using sensor
noise,” IEEE Trans. Inf. Forensics Security, vol. 3, no. 1, 2008.

[9] M. Barni et al., “Identification of cut & paste tampering by means of
double-jpeg detection and image segmentation,” in Proc. of IEEE Int.
Symposium on Circuits and Systems, 2010.

[10] G. Chierchia et al., “PRNU-based detection of small-size image
forgeries,” in Proc. of Int. Conf. on Digital Signal Processing, 2011.

[11] G. Chierchia et al., “Guided filtering for PRNU-based localization of
small-size image forgeries,” in Proc. of IEEE Int. Conf. on Acoustics,
Speech and Signal Processing, 2014.

[12] M.-M. Cheng et al., “DenseCut: Densely connected CRFs for realtime
GrabCut,” Computer Graphics Forum, vol. 34, no. 7, 2015.

[13] P. Korus and J. Huang, “Multi-scale analysis strategies in PRNU-based
tampering localization,” IEEE Trans. Inf. Forensics Security, To appear.

[14] S. Z. Li, Markov Random Field Modeling in Image Anlaysis, Springer-
Verlang, 2001.

[15] G. Chierchia et al., “A Bayesian-MRF approach for PRNU-based image
forgery detection,” IEEE Trans. Inf. Forensics Security, vol. 9, no. 4,
2014.

[16] P. Korus and J. Huang, “Multi-scale fusion for improved localization
of malicious tampering in digital images,” IEEE Trans. Image Process.,
vol. 25, no. 3, 2016.

[17] D. T. Dang-Nguyen et al., “RAISE - a raw images dataset for digital
image forensics,” in Proc. of ACM Multimedia Systems, 2015.

[18] “Dde laboratory,” http://dde.binghamton.edu/, visited in Sept. 2015.
[19] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy

minimization via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 23, no. 11, 2001.

[20] M. Schmidt, “UGM: A matlab toolbox for probabilistic undi-
rected graphical models,” http://www.cs.ubc.ca/∼schmidtm/Software/
UGM.html, 2011.

[21] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected
CRFs with Gaussian edge potentials,” in Proc. of NIPS, 2011.


