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Improved Tampering Localization in Digital Image
Forensics based on Maximal Entropy Random Walk
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Abstract—In this paper we propose to use maximal entropy
random walk on a graph for tampering localization in digital
image forensics. Our approach serves as an additional post-
processing step after conventional sliding-window analysis with
a forensic detector. Strong localization property of this random
walk will highlight important regions and attenuate the back-
ground - even for noisy response maps. Our evaluation shows
that the proposed method can significantly outperform both
the commonly used threshold-based decision, and the recently
proposed optimization-based approach with a Markovian prior.

Index Terms—digital image forensics; tampering localization;
visual saliency; maximal entropy random walk; first-digit fea-
tures; JPEG splicing

I. INTRODUCTION

Precise localization of tampered image regions is one of
the most challenging problems in digital image forensics.
While many forensic features are known to differ between
pristine and tampered images, their application for blind local-
ization poses additional challenges. Typically, the localization
capability is obtained by analyzing the image in a sliding-
window manner. Existing schemes include identification of
local inconsistencies of the photo response non-uniformity
(PRNU) pattern [1, 2]; splicing detectors based on either JPEG
features [3]; or steganography-inspired local descriptors [4, 5].

The final tampering map is typically obtained by comparing
the real-valued response map of a forensic detector to a thresh-
old. The distributions of the responses are difficult to calculate
or estimate accurately [5], which limits the applicability of
formal selection strategies like the well-established Neyman-
Pearson test [6]. Ad-hoc post-processing is typically employed
to eliminate excessive number of false positives.

The traditional threshold-based decision can be augmented
with prior knowledge, e.g., using the Markovian prior [2, 7].
As a result, the decisions regarding individual authentication
units are no longer independent, but consider also the de-
tection scores of their neighbors. The problem resolves to
minimizing an energy function that prefers larger solid areas
and discourages isolated erroneous spots. Such an approach
can also facilitate propagation of reliable detection scores into
unreliable regions with dark, solid or saturated content [2].
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Recently researchers began to explore new approaches that
do not require explicit mapping of the detection scores to the
final decisions. Chen and Hsu argue that the tampered region
should constitute a sparse cluster of outliers in a sufficiently
discriminative feature space [8]. Starting from robust principal
component analysis, they derive an iterative algorithm that
estimates the expected low-rank structure of pristine features.

In this paper, we propose to use the maximal entropy ran-
dom walk (MERW) [9] on a graph to post-process the response
map. Random walks, including MERW, have been success-
fully adopted for many problems including image segmenta-
tion [10], link prediction [11], and saliency estimation [12].
Our approach is inspired by recent successful use of MERW
for detection of salient objects in digital photographs [13]. In
conventional random walk, only local knowledge is available
to the walker when making the transitions. In MERW the
walker is aware of the full graph structure, which is beneficial
for many applications. MERW is characterized by a strong
localization property which will highlight important regions
of the map, and attenuate the background.

Adjusting the weights of the graph, allows to obtain sensi-
tivity to various aspects of the response map. To demonstrate
the potential of this flexibility, we consider different weight
computation strategies, including a visual saliency clue [13].
Distinct visibility of the tampered area in the response map
has served as an ”informal visual proof” of efficacy of newly
proposed localization schemes. However, it has never been
formally used for tampering localization - either separately
or as side-information. We are aware of only one study that
correlated saliency-based eye fixation coordinates with sharp
edges indicative of crude splicing [14]. Flexibility of our
approach allows us to formalize the above observation, and
evaluate how a saliency-based model compares to conventional
forensic clues. Sensitivity to different aspects of the response
map makes the saliency clue a potentially interesting tool
for decision fusion in the emerging multi-modal localization
schemes. Dempster-Shafer Theory of Evidence identifies clue
diversity as a critical property for decision fusion [15].

The proposed approach significantly outperforms existing
methods, including the commonly used threshold-based de-
cision with ad-hoc post-processing, and a recently proposed
optimization-based approach with a Markovian prior [6, 7].
In our experimental evaluation on synthetic JPEG splicing
forgeries, adoption of MERW yielded cleaner outputs and was
particularly beneficial for noisy response maps.

The paper is organized as follows. Sections II and III intro-
duce the MERW fundamentals, and the tampering localization
protocol, respectively. The performed experimental evaluation
is presented in Section IV. We conclude in Section V. Selected
issues are extended in supplementary materials.
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Fig. 1. Proposed localization framework; successive maximal entropy random
walks highlight important regions and improve visual organization of the
decision map; typical post-processing includes: map normalization, brightness
correction, and optionally binarization, and morphological cleaning.

II. MAXIMAL ENTROPY RANDOM WALK

This section introduces the fundamental notions of MERW.
For more information the readers can refer to [9, 16].

Let G = (V, E) denote an undirected graph with vertices
V = {1, . . . , N} and edges E = {(i, j) : i, j ∈ V}. A random
walk refers to a sequence of random variables Xt ∈ V where
t ∈ {0, 1, . . .} indexes successive time instances. In every
step, a walker performs a random transition from the current
node i ∈ V to a neighboring node j : j ∈ V ∧ (i, j) ∈ E .
The transitions are typically described by a probability matrix
PN×N with elements pij := P (Xt+1 = j|Xt = i).

We consider a weighted graph, conveniently described by a
weight matrix WN×N . The weight of individual edges (i, j),
denoted as wij , are non-negative and can be interpreted as
the average number of available paths from node i to node
j. A conventional random walker considers the nearest hop
transitions to be equiprobable. A maximal entropy walker con-
siders longer m-step paths passing through each prospective
next node, which makes it aware of the global structure of the
graph. The transition probabilities can be formally defined as:

pij =
wijuj
λui

(1)

where λ is the largest eigenvalue of the weight matrix W,
and ui, uj denote the i-th and the j-th component of the
corresponding eigenvector u. Since the weight matrix is non-
negative, both λ and u are non-negative according to the
Frobenius-Perron theorem [9, 13]. In this study, the quantity
of interest is the stationary probability density of finding the
walker at every node in the graph πi : i ∈ V ∧

∑
i πi = 1.

For MERW this probability is simply πi = u2i (generalizes to
πi = uivi for directed graphs with asymmetric weights having
different left and reight eigenvectors u and v [16]).

MERW possesses a strong localization property, which
will lead to suppression of low-degree (

∑
j wij) nodes and

stronger highlighting of high-degree nodes. Hence, by properly
choosing the weights of the graph, it is possible to exploit this
phenomenon for exposition of important image regions.

III. MERW FOR TAMPERING LOCALIZATION

The localization procedure is summarized in Fig. 1. The
input to the model is a real-valued response map c of a forensic
detector with detection scores for individual authentication
units denoted as ci ∈ [0, 1]. The extremes of the response
range represent the degree to which a certain forensic feature is
present / absent (or alternatively the confidence of the classifier
regarding the region’s authenticity).

We span a fully-connected graph on non-overlapping image
blocks of size 8 × 8 pixels (px)1. Similarly to [13], we
consider a two-layer approach where two successive MERWs
aim to identify important regions of the input map, and
improve visual organization of the output map, respectively.
We will separately assess the improvement of each of these
layers. The stationary probability densities π(I) and π(II),
after normalization to [0, 1] & prospective post-processing or
binarization, will constitute the final decision map for the
considered scenarios.

The first graph uses weights computed as:

w
(I)
ij = φ(ci, cj)e

−d2ij/σ
2
1 . (2)

The scores ci and cj correspond to the source and the target
nodes, respectively. The exponential term is responsible for
fading of the weights with normalized L2 distance between the
nodes dij ∈ [0, 1]; σ2

1 controls the fading strength. The main
component of the weight φ(ci, cj) determines the sensitivity of
the model to various aspects of the response map. The choice
of this weight is discussed separately in Section III-A.

The second graph facilitates better visual organization of the
tampering map, and helps to propagate the detected importance
to similar regions nearby. It is particularly useful for saliency-
related clues which tend to attenuate the middle of the detected
objects [13]. This graph uses the following weights:

w
(II)
ij = (1− |ci − cj |)π(I)

i π
(I)
j e

−d2ij/σ
2
2 , (3)

where π
(I)
i corresponds to the importance score of node i

resulting from MERW on the first graph.

A. Selection of Graph’s Weights

Complexity of the considered graph makes it impossible to
compute the optimal weights analytically. Hence, we consider
a few representative heuristic selection strategies motivated
by the properties of MERW. We have also evaluated more
sophisticated strategies. However, they provided marginal im-
provement and hence will not be presented in this paper.

Since the walker will concentrate on highly connected
regions (localization property), greater weights should be
assigned between tampered nodes. Edges between pristine
regions should have low weights. Hence, one possible strategy
is to make the weight propertional to the average response of
the source and target node (∝ ci + cj). A more agggressive
strategy would ignore the source node, and encourage transi-
tions to target nodes with confident response (∝ cj). It is also
interesting to exploit visual saliency in the response maps, and
adopt weights ∝ |cj−ci| (contrast between nodes). Hence, we
finally consider:

• φ(ci, cj) = (ci + cj)/2 - mean response mode;
• φ(ci, cj) = cj - raw target response mode;
• φ(ci, cj) = |cj − ci| - visual saliency mode.

1Other possible choices include, e.g., superpixels [13]. While beneficial for
shape identification and computational complexity, they are not necessarily
applicable in forensics - for object insertion forgeries, certain improvement
can be expected; for object removal, the effect is likely to be the opposite.
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IV. EXPERIMENTAL EVALUATION

This section describes the considered forensic detector, the
adopted evaluation scenario, and the obtained results. Selected
issues are extended in supplementary materials.

A. Detecting Forgeries in JPEG Images

We consider detection of JPEG image splicing forgeries
with the use of mode-based first digit features [17]. We
follow a similar localization scheme as Amerini et al. [3], but
use overlapping analysis windows instead of non-overlapping
ones. We consider 64 × 64 px blocks, moving with a single
block stride (8 px). As a result, we obtain smooth response
maps (column 2 in Fig. 3). We also increased the number
of features to 180 (20 modes of 9 features each) and the
density of the possible JPEG compression levels to Q1, Q2 ∈
Q = {50, 51, . . . , 100}. For each window size and each
JPEG quality level Q2, we train a separate support vector
machine (SVM) to distinguish between single and double
JPEG compression. The training was performed on 64×64 px
windows randomly chosen from 1,338 images from the UCID
dataset [18] and the relevant parameters of the SVM were
found by a grid search with 3-fold cross-validation.

B. Experiment Set-up

We test the proposed method on a data set of 1,000 response
maps obtained from synthetic splicing forgeries with the above
detector. The images are of size 512× 512 px and come from
the BOSS data set [19]. Each forgery involves replacement of
selected image regions (according to the patterns in col. 1 of
Fig. 3) with the same content from the same image but with a
different compression history. For each forgery the tampering
pattern is randomly placed on the image plane. We include
two scenarios with double-JPEG / single-JPEG compression
artifacts inside / outside of the tampered regions. The first and
second quality levels are chosen randomly from Q (but Q1 <
Q2), leading to diverse response maps of varied reliability.

We compare our performance to traditional threshold-based
decision, followed by removal of small connected components
(having less than 16 image blocks), which along morphologi-
cal erosion constitute the most popular approaches to cleaning
the tampering maps of false positives. We also evaluate a more
sophisticated method that includes the Markovian prior [2].
We resort to a popular Ising model with 1-st order neighbor-
hood and minimize the corresponding energy function with a
graph cuts-based solver [20, 21] from the UGM toolbox [22].
Localization trade-offs are controlled with three parameters:
decision bias α, interaction strength β, and threshold τ . For
this method, we refrain from ad-hoc map cleaning, and allow
the Markovian prior to remove false-positives. To facilitate
stronger neighborhood interactions, we post-process the result-
ing decision map with morphological dilation. We describe the
adopted model in detail in supplementary materials.

To observe localization performance trade-offs, we sweep
the decision threshold τ , and measure the number of true
positives (tp), false negatives (fn), false positives (fp) and
the F1 = 2 tp(2 tp+fn+fp)

−1 score. The threshold changes

TABLE I
PARAMETER SELECTION RESULTS FOR THE ENERGY MINIMIZATION
APPROACH (α̂, β̂) AND MERW WITH VARIOUS WEIGHTS (σ̂2

1 , σ̂
2
2).

Method / weight mode Best parameters Grid range Step

Markov −2.5, 2.7 [−3, 3]× [0, 3] linear

Optimization for the best AUC after the first MERW

saliency 0.37 [10−2, 1]
logtarget response 0.10

[10−2.5, 1]mean response 0.06

Optimization for the best AUC after the second MERW

saliency 0.67, 0.033 [10−2, 1]2

logtarget response 1.00, 0.023
[10−2.5, 1]2mean response 0.29, 0.030
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Fig. 2. Localization performance for 1,000 synthetic JPEG forgeries: receiver
operation characteristics (top); F1 score curves (bottom).

non-uniformly in the range [0, 1] to increase the number of
samples with low false positive rates. The parameters for the
localization methods were found by grid search on a subset
of 40 diverse response maps (Tab. I). Details of the parameter
search are included in supplementary materials.

C. Results

Fig. 2 shows the obtained receiver operation characteristics
(ROC) and the F1(τ) curves for the considered localization
schemes. For our tampering scenario, incorporation of the
Markovian prior turned out to provide little benefits over the
conventional threshold with ad-hoc post-processing (F1 =
0.703 vs. 0.707). We attribute this phenomenon to three main
reasons. Firstly, high variety of the response maps and tam-
pering patterns makes it difficult to choose a single universal
set of parameters. Along with false positives the Markovian
prior removed fine details of the tampered regions’ shapes.
Secondly, high overlap of the sliding window introduced
spatial correlations to the response maps. Hence, even the
traditional threshold-based decision already incorporated some
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Fig. 3. Example tampering localization results (labeled vertically with file names from the data set); the first columns illustrates the considered tampering
patterns (p1 - p4); the post-processing function was f(x) = 1−e−5x; binary decision thresholds were chosen to match the best average F1 scores: τ = 0.473
(threshold); τ = 0.722 (Markov); τ = 0.035 (MERW, visual saliency); τ = 0.10 (MERW, mean response); τ = 0.15 (MERW, target response).

information about the forensic scores in the neighborhood.
Finally, our forensic detector already produced solid shapes
without holes that the Markovian prior could fill.

Adoption of MERW is clearly beneficial - it considerably
improves the localization performance both in terms of ROCs
and F1 scores. The impact of the weight selection strategies
remains limited. Both the mean and raw target response
strategies yielded comparable results, with minor advantage
of the latter. Incorporation of the second MERW brings little
improvement in terms of ROC performance, but significantly
impacts the appearance of the map. The resulting maps are
more attenuated, which can be observed both in the example
tampering maps (Fig. 3) and in the shifted maximum of the
F1(τ) curve towards τ → 0. Non-linear brightness adjustment
might be desirable for the convenience of subsequent process-
ing and display. We used a simple mapping f(x) = 1−e−5x to
boost low scores in the final map. Adjusting the strength of this
mapping does not change the ROC performance, and allows to
obtain a clearer map with flatter F1 curve. Incorporation of the
visual saliency clue reveals different behavior. It outperformed
other strategies for low false positive rates, but required the
second MERW for adequate results.

Fig. 3 shows example tampering maps for the considered
localization schemes. It shows the real-valued maps produced
by both MERWs (with separately chosen parameters for

the single / double MERW) and the final decision obtained
from the second one. Notice how weight selection impacts
importance of different map regions. In particular, note how
the saliency model responds to distinctive, but not necessarily
white, regions of the response maps (e.g., just above the
tampered area for p1_0303s). In general, rationale for such
behavior depends on the forensic feature at hand. It might
be desirable to attract the attention of either a human analyst
or successive processing steps to response map anomalies, and
then to cross reference these regions with other image features.

V. CONCLUSIONS

Our study shows that the maximal entropy random walk
can be successfully adopted for tampering localization in
digital image forensics. For synthetic JPEG splicing forgeries,
it significantly outperformed existing localization strategies,
including the commonly used threshold-based decision, and
the recently proposed energy minimization approach with a
Markovian prior. The proposed method servers as an addi-
tional post-processing step, and does not require any changes
to existing forensic detectors. Adjusting the weights of the
constructed graph allows to use various clues from the input
response map. To demonstrate flexibility of the proposed ap-
proach, we evaluated three distinct weight selection strategies
- each of which performed better than the state-of-the-art.
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