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Towards Practical Self-Embedding for
JPEG-compressed Digital Images
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Abstract—This paper deals with the design of a practical self-
recovery mechanism for lossy compressed JPEG images. We
extend a recently proposed model of the content reconstruction
problem based on digital fountain codes to take into account the
impact of emerging watermark extraction and block classification
errors. In contrast to existing methods, our scheme guarantees
high and stable level of reconstruction quality. Instead of intro-
ducing reconstruction artifacts, emerging watermark extraction
errors penalize the achievable tampering rates. We introduce
new mechanisms that allow for handling high-resolution and
color images efficiently. In order to analyze the behavior of
our scheme, we derive an improved model to calculate the
reconstruction success probability. We introduce a new hybrid
mechanism for spreading the reference information over the
entire image, which allows to find a good balance between the
achievable tampering rates and the computational complexity.
Such an approach reduced the watermark embedding time from
the order of several minutes to the order of single seconds, even
on mobile devices.

Index Terms—Content Authentication; Content Reconstruc-
tion; Self-Embedding; Digital watermarking;

I. INTRODUCTION

Self-embedding is a pro-active digital image protection tech-
nique allowing for the reconstruction of maliciously tampered
image fragments. It exploits an auxiliary reconstruction refer-
ence, embedded in the image by means of imperceptible digital
watermarking [1]. Typically, the reconstruction reference takes
the form of an encoded low-quality representation of the
original image and is embedded along with hashes of the
original content, which are used for tampering localization.

A variety of self-embedding schemes have been proposed
so far, but none of them have successfully addressed all issues
preventing practical application of this protection mechanism.
Due to high requirements towards watermarking capacity, most
of existing schemes use spatial domain least significant bit sub-
stitution (LSBS) for information embedding. Such an approach
limits the applicability of self-embedding to lossless image
representation formats. The key to its practical applicability
is to provide support for commonly used lossy-compressed
formats, in particular for the widely adopted JPEG. It is
also necessary to handle high-resolution and color images
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efficiently. While there have been some attempts to address
JPEG compatibility, the latter aspect has not received any
attention. Compatibility with color images cannot be achieved
by simple replication of the single-channel protection process,
as chrominance channels are often treated differently from the
luminance during compression. The issues related to high-
resolution images and computational complexity are equally
important for successful implementation on mobile image
acquisition devices, e.g., smartphones or digital cameras [2].

The goal of this study is to address the above-mentioned
issues. The adopted approach to handling lossy compression
is different from existing solutions. It aims at delivering a
stable and high level of reconstruction quality. We achieve this
goal by ignoring damaged fragments of the watermark, which
enabled us to maintain the desired reconstruction fidelity at
the cost of achievable tampering rates. By contrast, other
approaches involve a tolerant restoration procedure, where
erroneous fragments of the reconstruction reference introduce
reconstruction artifacts. In such schemes, the maximum tam-
pering rate is determined implicitly by the humans’ capability
to recognize the content. Depending on the configuration, our
scheme can perform successful reconstruction when even up
to 67% of the image area becomes tampered. For the highest
considered fidelity, the average peak signal to noise ratio
(PSNR) reaches 33 dB on a dataset of 10,000 natural images.

One of our main goals is to optimize the computational com-
plexity. Due to potential implementation on mobile devices,
we focus on watermark embedding. To this end, we develop a
new mechanism for spreading the reference information over
the image. Previous studies have shown that it is essential for
achieving optimal content reconstruction performance [3–5].
However, existing approaches proved computationally infea-
sible for high-resolution images. Our method combines the
benefits of existing solutions; its adoption can reduce the
embedding time from a dozen of minutes to a few seconds,
even for large images. In this study, we theoretically analyze
the efficiency of the proposed mechanism, and verify the
obtained results in an exhaustive experimental evaluation. Due
to inaccuracy of previous analysis [3] in the current conditions,
we derive an improved model to calculate the probability of
successful reconstruction.

The paper is organized as follows. In Section II we review
the current state-of-the-art, and highlight the key concepts and
techniques. The operation of the proposed scheme is described
in Section III, and analyzed theoretically in Section IV. The
performed experimental evaluation is described in Section V.
We conclude in Section VII. Fragments of this work were
presented during EUSIPCO‘13 [6]. This paper is accompanied
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by supplementary materials with full resolution, images, more
evaluation results, and a short video demonstration.

II. RELATED WORK

The problem of self-recovery can be approached from dif-
ferent perspectives, ranging from simple application of forward
error correction codes [7], up to sophisticated mechanisms
based on compressive sensing [4]. The problem essentially
comes down to communication of the reference information
to a decoder over the tampered image. In this section, we
review the works that addressed the problem of constructing
efficient self-recovery mechanisms, evaluating their success
bounds, and supporting lossy compression. We conclude with
a brief summary of our contributions.

A. Achievable Limits of Self-Recovery

Most self-embedding schemes operate block-wise. The early
ones used naive construction of the watermark, involving
embedding a block’s reference information into another block.
This approach is clearly sub-optimal as it is crippled by inter-
block dependencies. A block can be restored only if another
block, carrying its reference information, is still authentic. It
has been recently shown that for optimal performance it is
necessary to spread the reference information on each block
over the entire image, and reuse the remaining authentic
content during recovery [3–5].

Spreading mechanisms can be constructed by combining
reference information from many image fragments while con-
structing the watermark for each image block. The process is
usually controlled by a pseudo-random matrix. Pixel-wise ap-
plication of such a mechanism is computationally feasible only
for very small images. So far, only two practical approaches
have been described. First, the input image can be divided into
a lot of smaller, randomly selected tasks [3, 4]. The spreading
mechanism is applied to each of the tasks separately, and the
resulting watermark is additionally scattered over the entire
image. A considerable disadvantage of this approach is the
drop of achievable tampering rates, e.g., to 25% [3] from
the theoretically achievable 33.3% [5]. Another approach is
to model the reconstruction problem as a communication over
an erasure channel, and apply the protection mechanism to
the whole image at once, but using M-ary symbols instead of
individual pixels or bits (with symbol length corresponding
to blocks’ embedding capacity) [5]. Such schemes can be
implemented in practice with the use of digital fountain codes
(DFC) [8], and achieve the theoretical communication limits.
However, neither of the two approaches is well suited for
mobile devices. While reasonable computational efficiency
is observed for common test images (0.25 Mpx), for high-
resolution images the computations become prohibitively time-
consuming. A C++ implementation of the DFC-based encoder
for JPEG images [6] needs 6 minutes to protect (low quality
mode - λ = 2) a 16 Mpx grayscale image on a typical desktop
PC. For color images the time increases twofold.

In order to address this issue, we pseudo-randomly divide
the image into sub-images, processed in separate tasks; the
DFC-based spreading is performed for each of these tasks

separately. This hybrid mechanism combines the approaches
described in [3] and [5]. It involves an additional operation
layer which controls the execution of the conventional pro-
tection mechanism. Such an approach has several benefits.
First, the tasks can be executed in parallel which makes the
method well suited for contemporary computing environments.
Second, it gives more control over the computational complex-
ity. Utilization of constant-size tasks guarantees linear growth
of the protection time, instead of the polynomial growth
for the single-task version. Finally, proper selection of the
number of tasks allows for balancing the processing time
and deterioration in success conditions. Specifically, we were
able to reduce the watermark embedding time to the order of
seconds, even for high-resolution images, without deteriorating
the success bounds by more than 3% of the image area.

B. Tolerance for Lossy Compression

The reconstruction reference needs to describe the appear-
ance of the image, and therefore incurs a requirement for high
watermarking capacity. As a result, the dominant embedding
technique is LSBS in the spatial domain. While it delivers
high capacity with low embedding distortion, it fails to provide
robustness against any image processing. As a result, it is best
suited for fragile watermarking schemes.

Tolerance for selected image processing operations, known
as semi-fragility, usually involves robustness against content-
preserving operations, most importantly lossy compression.
This implies the necessity to tolerate distortions of the ref-
erence information, which comes at a cost of abandoning
compact image representations, and replacing them with more
robust ones. As a result, the reconstruction quality is severely
limited. Moreover, it is difficult to assess the efficiency of such
schemes as there are no explicit success bounds. The bounds
are implicitly determined by the humans’ ability to recognize
the content despite emerging restoration artifacts.

Only a few semi-fragile self-recovery schemes have been
proposed in the literature so far [9–12]. One possible approach
is to construct the reconstruction reference as a traditional
binary watermark obtained by half-toning the sub-sampled
image [9]. The authors quantize discrete wavelet transform
(DWT) coefficients to embed the watermark. The reconstruc-
tion is performed by inverse half-toning of the extracted
watermark. Emerging errors introduce noise into the restora-
tion result, which quickly becomes indiscernible. When no
errors are observed the scheme delivers reconstruction PSNR
between 22 dB to 28 dB. Alternatively, the reconstruction
can be performed by training a multilayer perceptron neural
network to predict gray-scale values from the embedded half-
tone image [13]. The authors report an improvement of ≈4 dB
compared to Gaussian filtering-based inverse half-toning.

Content reconstruction can also be modeled as an irregular
sampling problem [10]. The restoration is then performed by
iterative projections onto convex sets. The reference data is
obtained by logical exclusive disjunction on cosine transform
coefficients’ polarity and pseudo-random bit sequences. The
watermark is embedded by modulating middle frequency
components of the pinned sine transform. The scheme operates
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Fig. 1: Operation of the considered self-embedding scenario with prospective recompression to a quality factor Q2 ≥ Q1.

on sub-blocks and macro-blocks, used for authentication and
restoration, respectively. The scheme is robust against lossy
JPEG compression, Gaussian filtering, unsharpening, and con-
trast changes. The main limitations include low reconstruction
fidelity and low resistance to tampering. Provided that the
tampered areas are sufficiently small, and that no global attacks
are present, the PSNR in the restored regions can reach 27 dB,
but typically varies between 12 dB and 24 dB.

There also exist format-specific schemes, e.g., dedicated to
JPEG [11, 12]. As a reconstruction reference Lin and Chang
use a down-sampled gray-scale version of the image [11],
compressed to an equivalent of JPEG quality level 25. Such
an approach severely limits the achievable fidelity. The recon-
struction is possible if the tampering affects only a small area.
A specific bound on the tampering rate is not reported. Wang
et al. use linear regression to predict first 4 DCT coefficients
of the tampered blocks from the embedded reference infor-
mation [12]. Again, the maximum achievable reconstruction
quality is low. The reported typical PSNR is ≈25 dB, and
drops even further with JPEG quality. The scheme tolerates
only limited tampering, but no specific bound is given.

A common disadvantage of the mentioned schemes is not
only the relatively low reconstruction quality, but also its quick
deterioration with increasing compression strength. Distortions
in the reference information are escalated and introduce ar-
tifacts which ultimately render the image indiscernible. We
propose to adopt a different approach where erroneous portions
of the watermark are discarded and do not contribute to the
reconstruction process. As a result, the reconstruction quality
remains at the same level, and instead the emerging errors
limit the tolerance for tampering. In this study, we define 4
quality levels, ranging from coarse fidelity with average PSNR
of 28 dB, up to high fidelity with average PSNR of 33 dB.
The achievable tampering rates vary between 67% and 20%,
depending on the selected quality level.

III. PROPOSED SCHEME

The considered application scenario is illustrated in Fig. 1.
The encoder yields a protected JPEG image with quality factor
Q1. As a result of malicious tampering, the attacker yields a
JPEG image with quality Q2 ≥ Q1. The reconstruction will
also work properly after conversion to a lossless image format,
e.g., PNG. The protection process is controlled by a security
context κ. The structure of the context will depend on the
application, and will typically contain the time-stamp of the
photograph, the necessary encryption keys, etc.

For the sake of presentation clarity, we first explain the op-
eration of the proposed scheme for single-channel gray-scale
images. Extension to color images is discussed separately. The
adopted notation of symbols is summarized in Table I. Let I
be the input image of size w×h px, divided into 4N blocks of

TABLE I: Summary of the adopted notation.

λ rate of reference information (quality controlling parameter)
κ security context

Q1/Q2 JPEG quality level of the protected/tampered image
N number of macro-blocks in the image
Nt number of tasks
L number of macro-blocks in a single task
K total number of tampered macro-blocks in the image

I/Ii input image / i-th macro-block
ri reference information for the i-th macro-block

w/h image width / height
γ̃ tampering rate
B number of ref. bits that can be embedded in a 8×8 px block
H number of hash bits that can be embedded in a 8×8 px block

Pλ precision allocation matrix for reconstruction quality level λ
PQ1

maximum coefficient precision matrix
EQ1 embedding capacity matrix
Xk 4B-bit RLF input symbol
Yi 4B-bit RLF output symbol (ref. payload for i-th macro-block)

ci/ĉi i-th DCT coeff. in the current block (original / watermarked)
nc number of same-capacity channels in the image

fp/fn false positive / negative block classification rate
f0 hash collision probability
pe watermark symbol error rate
nl number of tested combinations during error compensation
dm total number of coefficients considered during compensation
dc number of coefficients that can be compensated at once
dh Hamming distance threshold for hash validation
Pt distribution of the number of tampered blocks in a task
Pso probability that a single task will be successful
PS probability that all tasks are successful

q(i, j) probability that a random binary matrix is of insufficient rank

size 8× 8 px. Due to limited embedding capacity, the blocks
are grouped into 16 × 16 px macro-blocks, which serve as
authentication and reconstruction units. The i-th macro-block
is denoted as Ii. The embedding capacity is 4B+2H bits per
macro-block. The number of reference bits 4λB is identical
for all macro-blocks and is controlled by the reference rate
λ ∈ N+. In this study we consider 4 reconstruction fidelity
levels, i.e., λ ∈ {1, 2, 3, 4}.

The restoration success is mainly determined by the recon-
struction quality. Let γ̃ = 1 − γ denote the tampering rate,
i.e., the number of tampered authentication units. Then, the
restoration success condition becomes [5]:

γ ≥ λ(1− γ)⇒ γ ≥ λ(λ+ 1)−1. (1)

The maximum achievable tampering rate is denoted as γ̃max.

A. Encoder

Operation of the encoder is shown in Fig. 2. The first step is
to perform a standard JPEG compression with quality factor
Q1. The resulting JPEG image is then used to generate the
reconstruction reference. The reference information for the i-
th macro-block is denoted as ri, and consists of concatenated
bit-streams for its corresponding image blocks. Each block
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Fig. 2: Operation of the encoder for λ = 2.

is described by λB bits, allocated to individual coefficients
according to an allocation matrix Pλ. The component corre-
sponding to the i-th coefficient is denoted as Pλ[i].

Let EQ1
be a matrix of embedding capacity, and DQ1

a
matrix of maximal coefficient precision for Q1. Then, the
reference information for the i-th DCT coefficient ci can be
extracted as its sign and Pλ[i]− 1 most significant bits from
its DQ1

[i]-bit representation:

round
(
ci· 2Pλ[i]−DQ1

[i]
)
. (2)

Coefficients’ magnitudes exceeding the precision defined by
DQ1

are saturated to 2DQ1
[i] − 1. In order to ensure that the

extractable reference information is identical after watermark
embedding, the following condition needs to be satisfied:

∀i=1,2,...,64 Pλ[i] + EQ1
[i] ≤ DQ1

[i]. (3)

The complete reconstruction reference is then divided into
4B-bit symbols Xk : k ∈ {1, . . . , λN}. A random linear foun-
tain (RLF) code produces same-length embedding symbols
Yi : i ∈ {1, . . . , N} for N macro-blocks. Watermark symbols
are then obtained by appending two H-bit hashes to validate
the watermark payload, and the image content, respectively:

hi,1 = hash(Yi, κ, i), (4a)
hi,2 = hash(ri, κ, i). (4b)

The double-hash mechanism improves the reconstruction
performance by enabling discrimination between corrupted
block payload and content (Section IV).

The final step is to scramble the individual watermark sym-
bols and embed them into their corresponding macro-blocks.
In order to embed a message m ∈ {0, . . . , 2EQ1

[i] − 1}, the

coefficients of the originally produced JPEG file are modified
according to:

ĉi = round
(
ci· 2−EQ1

[i]
)

2EQ1
[i] − 2EQ1

[i]−1 +m, (5)

which can be seen as a variant of quantization index modula-
tion (QIM) [14] or bit substitution.

Depending on the desired embedding strength, the coeffi-
cients might be bit-wise shifted before and after embedding.
We use a 1-bit shift for Q1 ≥ 92. The embedding locations are
defined individually for various quality levels Q1 by means of
the embedding capacity matrices EQ1

, obtained by selecting
coefficients least vulnerable to rounding errors. Two example
matrices for the luminance component are shown in (6). For
the sake of notation compactness, only positive elements are
shown. All matrices are of size 8× 8.

E85 =


222222
2 22
2 22
222
22
2

 ,E90 =


2 222
2 222
2222
222
22
2

 . (6)

The allocation matrices Pλ for quality levels λ = 1 and
λ = 2 are shown in (7).

P1 =

 643
44
3

 ,P2 =

 7663
663
53
3

 . (7)

B. Decoder

Operation of the decoder is shown in Fig. 3. The first step
is to extract the watermark. For each watermarked coefficient
ĉi the embedded message m is extracted according to:

m = ĉi − round
(
ĉi· 2−EQ1

[i]
)

2EQ1
[i] − 2EQ1

[i]−1. (8)

The extracted symbols are then unscrambled and demul-
tiplexed to yield the embedding payload Ŷi, and the hashes
ĥi,1−2. Simultaneously, reference information is regenerated.
Both hashes are then recalculated, and compared with their
extracted counterparts. The resulting erasure and tampering
maps identify image blocks which need to be restored, and
watermark symbols which can be used for the restoration.

Due to prospective coefficient rounding errors resulting
from recompression, a compensation step is employed. A pre-
calculated error map indicates the coefficients, which are
the most vulnerable. If a block is deemed tampered, the
decoder attempts to match the hashes for a number of most
likely rounding errors. We allow for ±1 changes in the
coefficients’ magnitudes. Analogous compensation is used
for the watermark payload, where bit-flips are considered.
Additionally, since the hashes differ significantly even for
the slightest changes in the input data, it is beneficial to
increase the Hamming distance threshold to allow for a certain
number of erroneous bits during hash comparison, provided
that their locations match the most probable rounding errors.
The number of trials should be chosen according to the desired
false negative classification rate (Section IV).
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Fig. 3: Operation of the self-embedding decoder.

The corrected reference information regenerated from au-
thentic image blocks is then used to remove their corre-
sponding dependencies from the correctly extracted embed-
ding symbols. The resulting simplified RLF code is then
decoded to yield the reference information of the tampered
image fragments. Their approximate original appearance is
then restored using the recovered DCT coefficients.

C. Operation on Color Images

Extension to color images operates in one of two possi-
ble modes. Assuming gray-scale reconstruction is sufficient,
the additional embedding capacity can be used to provide
more redundancy for the luminance channel. We refer to
this configuration as extended grayscale reconstruction. Then,
disregarding rounding errors, the restoration condition can be
obtained by adapting (1):

ncγ ≥ λ(1− γ)⇒ γ ≥ λ(nc + λ)−1, (9)

where nc denotes the number of available same-capacity
channels. Due to more severe quantization of the chrominance
components, their capacity is lower than for the luminance.
However, the rate of reference information is also lower. We
combine the Cb and Cr channels to obtain a single auxiliary
channel of identical capacity as the luminance. Hence, nc = 2
which translates to improvement of the achievable tampering
rates by up to 17% of the image area (Table II).

Alternatively, the additional capacity can be used for the re-
construction of the chrominance channels. The reconstruction
is performed independently from the luminance component,
and the success bound for each component is (9) for nc = 1.

TABLE II: Improvement of the supported tampering rates in
the extended grayscale reconstruction mode.

Max. tampering rate γ̃max for
λ = 1 λ = 2 λ = 3 λ = 4

nc = 1 0.50 0.33 0.25 0.20
nc = 2 0.67 0.50 0.40 0.33

1 2 3 4

5 6 7 8

9 10 11 12

Input image

5 3 12 8

Image for task 2

Encoder (κ, 2)

4 6 1 11

Image for task 3

Encoder (κ, 3)

9 7 2 10

Image for task 1

Encoder (κ, 1)

Top
layer

B
ottom

layer

Pa
ra

lle
liz

at
io

n

Fig. 4: Parallel processing of a high-resolution image.

D. Handling High-Resolution Images

In order to address the problem of excessive computational
complexity, we propose a two-layer spreading mechanism
(Fig. 4), which combines the approaches proposed in [5]
and [3]. The top layer pseudo-randomly divides the input
image into separate tasks, analogously as in [3]. Hence, the
tasks contain macro-blocks that are scattered over the entire
image. Each task is then independently processed at the bottom
layer (Section III-A) which enabled their parallel execution.
The task identifier needs to be included in the security context
κ.

The number of tasks can be either specified directly, or
indirectly via the desired task size. Such flexibility allows for
more precise control over the computation time, which grows
polynomially with the size of a single task. If the task size
is fixed, the total processing time will increase linearly. The
process can be configured to maintain achievable tampering
rates close to the theoretical bounds, as well as significantly
reduced processing time (Section IV-B).

IV. THEORETICAL ANALYSIS

This section shows how the theoretical model proposed
in [5] can be extended to take into account the impact of
watermark extraction and block classification errors. We also
calculate the reconstruction success probability for the pro-
posed two-layer reference information spreading mechanism.

A. Impact of Block Classification Errors

Due to coefficient rounding errors during prospective image
editing, unintentional bit flips either in the blocks’ reference
information, or the embedded payload, make it possible for
authentic image blocks to be misclassified as tampered. Such
blocks would be restored in the decoder, and would unneces-
sarily limit the achievable tampering rates. Given false positive
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TABLE III: Success bounds in the presence of block classifi-
cation and watermark extraction errors.

γ̃max [%] for symbol error rate pe

Mode λ 0.0 0.01 0.05 0.10 0.15

Single-hash 1 50.0 49.5 47.4 44.4 41.2
Single-hash 2 33.3 32.7 29.8 25.9 21.6
Single-hash 3 25.0 24.2 21.1 16.7 11.8
Single-hash 4 20.0 19.2 15.8 11.1 5.9

False positive rate fp = 0.01

Double-hash 1 49.7 49.5 48.5 47.1 45.7
Double-hash 2 32.9 32.7 31.7 30.6 29.3
Double-hash 3 24.4 24.2 23.5 22.5 21.5
Double-hash 4 19.4 19.2 18.5 17.7 16.8

False positive rate fp =0.05

Double-hash 1 48.7 48.5 47.4 45.9 44.4
Double-hash 2 31.0 30.8 29.8 28.6 27.3
Double-hash 3 22.1 21.9 21.1 20.0 18.9
Double-hash 4 16.7 16.5 15.8 14.9 14.0

classification rate fp, the restoration condition becomes:

(1− fp)γ ≥ λ(1− γ) + λγfp, (10a)

γ ≥ λ(1− fp + λ(1− fp))−1, (10b)

for a self-embedding scheme with a single hash.
The introduced double-hash mechanism can distinguish

tampered blocks from erased embedding symbols. If a block
is authentic, yet contains invalid payload, it will not be
reconstructed. Let pe denote the watermark symbol error rate.
Then, the reconstruction condition becomes:

(1− pe)γ ≥ λ(1− γ) + λγfp, (11a)

γ ≥ λ(1− pe + λ(1− fp))−1. (11b)

False positive classification errors are significantly less fre-
quent than watermark symbol errors, i.e., fp � pe. Hence,
adoption of the double-hash mechanism limits unnecessary
block reconstructions, and leads to higher achievable tam-
pering rates. Table III collects the theoretical tampering rate
bounds for both the single and the double-hash configurations.
For an example case of fp = 0.01 and pe = 0.1, the tampering
rate bound for the reconstruction quality λ = 2 is 25.9% for
the single, and 30.6% for the double-hash configurations.

False negative classification errors occur when a tampered
block is by chance deemed authentic. The primary factor,
which influences the collision probability f0 is the length of
the hash H , i.e., f0 ≈ 2−H . The introduced hash tolerance
and compensation mechanism increases the effective collision
probability. By proper selection of the compensation parame-
ters it is possible to maintain the desired error rate.

The compensation mechanism attempts to perform the most
likely ±1 adjustments of the coefficients’ values. Given that
up to dc coefficients out of dm most probable ones can be
corrected at once, the number of tested combinations is:

nl =

dc∑
i=1

(
dm
i

)
2i. (12)

Once the compensation attempts fail, the decoder compares
the Hamming distance between the hashes against a threshold
dh. The number of possible valid hashes is:

dh∑
i=1

(
H
i

)
. (13)

Finally, the false negative probability can be estimated from
the Bernoulli trials:

fn ≈ 1− (1− f0)nl + (1− f0)nl
dh∑
i=1

(
H
i

)
f0. (14)

B. Impact of the Proposed Two-Layer Spreading Mechanism

Division of the content-reconstruction problem into smaller
tasks has two main consequences. First, it gives more control
over the computational complexity. In particular it allows for
linear growth of the computation time with the image size, and
for parallel execution of the tasks. Second, successful recovery
becomes less probable as the number of tasks increases. Sev-
eral reconstruction problems need to be solved for the whole
reconstruction to be successful which leads to increased overall
failure probability. Additionally, the efficiency of RLF coding
deteriorates for smaller problems, as the relative overhead
of the code increases. Combined with the requirement for
multiple tasks to be successful, this may severely deteriorate
the achievable reconstruction success bounds.

As a result, there is a trade-off between the computational
complexity and the achievable success bounds. We will show
that it is possible to balance the two aspects by properly
choosing the number of tasks. Without loss of generality,
we assume same size of the tasks. Each of the tasks expe-
riences various extent of tampering, oscillating around the
known tampering rate γ̃ for the whole image. Originally, this
phenomenon was modeled with the use of Bernoulli trials
under the assumption that the tasks are fully independent [3].
Then, when considering a single task, the number of tampered
macro-blocks has the following distribution:

Pt(m) =

(
L

m

)
· γ̃m· (1− γ̃)L−m, (15)

where L is the number of macro-blocks within each task, and
γ̃ is the tampering rate, corresponding to failure probability
in the Bernoulli-based model. The probability of successful
reconstruction of a single task is then:

Pso =

L∑
m=0

Pt(m)(1− q(L−m,λm)). (16)

The term 1 − q(i, j) denotes the probability that a random
binary matrix of size i × j has sufficient rank. Based on
boundary analysis [15] we approximate it as:

q(i, j) ≈


1, if j > i,

2−i, if j = 1,

0.712, if j = i,

2j−i, otherwise.

(17)

Let K = γ̃N be the number of tampered macro-blocks in
the whole image, divided into Nt = N/L tasks. The overall
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reconstruction success probability is P (leg)
S = PNtso . We refer

to this Bernoulli-based model as a legacy model. While its
accuracy is good for higher numbers of tasks, for lower ones
it is no longer satisfactory. By examining the case of two
tasks, it becomes clear that the tasks are dependent as they
are constrained by the given number of tampered blocks in the
whole image. When the tampering rate is near the theoretical
bound, the increasing probability of the first task’s success
makes the second task’s success impossible.

In order to address this issue, we derive an improved
model, which accurately reflects the mentioned phenomena.
The number of combinations of m tampered macro-blocks
is
(
K
m

)
and the number of combinations of choosing the

complementing authentic macro-blocks is
(
N−K
L−m

)
. The total

number of combinations is
(
N
L

)
. Let m(1) denote the number

of tampered macro-blocks in the first task. Then the probability
mass function of the possible outcomes has the following
form:

Pt1(m(1) = m) = ρ(m,N,L,K) =

(
K
m

)(
N−K
L−m

)(
N
L

) , (18)

where m ∈ Ω
(1)
m = {max(0, L + K − N), . . . ,min(K,L)}.

The reconstruction success probability for a single task can
now be calculated as:

Ps =
∑

m ∈ Ω
(1)
m

Pt1(m(1) = m)(1− q(L−m,λm)). (19)

The formula in (19) can also be interpreted as the expected
successful tasks rate. By estimating the overall success prob-
ability as P (sim)

S = PNtLI , we obtain a simplified model. Such
an approximation is reasonable in the high probability region,
but looses accuracy near the theoretical tampering rate bound.
In order to calculate the overall success probability we need
to take into account how the probability distribution in (18)
changes for successive tasks.

The probability that the second task has m tampered macro-
blocks, given that the first task has m(1) macro-blocks is:

P (m(2) = m|m(1)) =

(
K−m(1)

m

)(
N−K+m(1)

L−m
)(

N−L
L

) = (20a)

= ρ(m,N − L,K −m(1), L). (20b)

Let use define K(i) as the number of tampered macro-
blocks, not yet assigned to any of previously considered i− 1
tasks. Analogously N (i) = N − (i − 1)·L denotes the total
number of not yet considered macro-blocks. Then:

P (m(2) = m|m(1)) = ρ(m,N (2),K(2), L). (21)

This leads to the following recursive formula for the proba-
bility of all possible combinations:

P (m(1), . . . ,m(Nt)) = P (m(1))· (22a)

·P (m(2) | m(1))· (22b)

·P (m(3) | m(1),m(2))· (22c)
· . . . · (22d)

·P (m(Nt) | m(1), . . . ,m(Nt−1)). (22e)
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Fig. 6: Theoretical success bounds for the proposed reference
spreading mechanism (λ = 2); failure threshold 10−3.

The last term is always equal to 1 since there are only Nt−1
degrees of freedom. The formula can be written in a more
compact form:

P (m(1), . . . ,m(Nt)) =

Nt−1∏
i=1

ρ(m(i), N (i),K(i), L), (23)

and the success probability can be easily derived as:

P (full)
S =

∑
m(i)∈Ω(i)

m ,
i=1,...,Nt

Nt∏
i=1

ρ(m(i), N (i),K(i), L)· q(L−m(i), λm(i)),

(24)
where Ω

(i)
m denote the sets of feasible ranges of m(i), i.e.,:

Ω(i)
m = {max(0, L+K(i)−N (i)), . . . ,min(K(i), L(i))}. (25)

We refer to this formula as the full model. Due to excessive
computational complexity, for some configurations we use the
reasonably accurate simplified model (Appendix A).

Fig. 5 shows the expected successful tasks rate Ps and the
reconstruction success probability PS vs. tampering rate for
a 2 Mpx image, λ = 2 and various numbers of tasks. It
is clearly visible that the success probability decreases with
increasing number of tasks. The curve of the successful tasks
rate becomes flatter. However, it is always nearly 0.5 for the
theoretical upper bound γ̃max (marked with a dotted line).

By applying a threshold on the reconstruction success
probability it is possible to define a bound on the achiev-
able tampering rate. Fig. 6 shows the obtained bounds for
λ = 2 and failure threshold 10−3. While the success bounds
deteriorate considerably with increasing number of tasks, it is
possible to remain close to the theoretical limits by carefully
choosing the task size. Based on the performed analysis, we
can conclude that a reasonable strategy is to define a desired
size of a single task. For 1 Mpx tasks, the tampering rate bound
does not fall below 30% of the image area from the theoretical
limit of 33.3%. This configuration is marked with a thick
dashed line in Fig. 6. The impact on watermark embedding
time will be addressed in detail in Section V-E.

The tampering rate bound can also be defined differently.
If it is not necessary to guarantee successful recovery for all
of the tasks, it might be beneficial to define the bounds based
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Fig. 5: Theoretical curves for the expected number of successful tasks and for the overall success probability versus the
tampering rate for a 2 Mpx image and various numbers of tasks.

on the expected successful tasks rate. Irrecoverable tasks can
be approximated from the surrounding blocks (Section V-F).

V. EXPERIMENTAL EVALUATION

In the performed experiments we use H = 24 bit hashes,
and embedding symbols of length 4B = 96. In each 8× 8 px
block, we embed 36 bits, divided into 6+6 bits for the hashes
hi,1−2, and 24 bits for the reconstruction reference. Hence, the
amount of reference information per macro-block is 96λ bits.
Except for the protection time assessment for high-resolution
images, the experiments were performed on 512 × 512 px
natural gray-scale images from the BOWS2 data set [16].

A. Block Classification Errors

The goal of this experiment was to assess the false positive
classification rate, i.e., how often authentic, but recompressed
image blocks are deemed as tampered. The first step was to
produce a protected image with quality Q1 ∈ [85; 100]. After
recompression to Q2 ∈ [Q1; 100], the decoder attempted to
authenticate the image. The experiment was repeated with 10
distinct seeds for the PRNG, and a subset of 120 representative
natural images. Fig. 7 shows the average rates of correctly clas-
sified blocks and extracted watermark symbols. The highest
observed false classification rate fp is 0.0003%. The highest
observed symbol error rate pe is 0.0608%.

To validate the theoretical estimate of the false negative
probability (14), we tested 6,243 unwatermarked images. Since
H = 24, the rank of the principal false negative rate is
log10f0 = −7.22. Compensation of the reconstruction refer-
ence uses dm = 24 and dc = 2; from (14) the rank of the false
negative rate increases to log10fn = −4.16. The compensation
has dominant influence on fn and on the basis of (14) we can
allow for dh = 2 without significantly deteriorating fn. Then,
the expected log10fn = −4.06. From the total of 6,392,832
blocks, exactly 608 were classified as authentic. Hence, the
empirical false negative classification rate falls into range
log10fn ∈ [−4.058;−3.989] with 95% confidence.

The payload compensation mechanism allows to consider
dm = 32 most probable coefficients. Hence, after allowing for
up to dh = 2 different bits in the hash vectors, the rank of the

false negative rate increases to log10fn = −3.854. Exactly 834
blocks were identified as carrying a valid watermark payload.
Hence, the empirical false negative classification rate falls into
range log10fn ∈ [−3.915;−3.856] with 95% confidence.

B. Reconstruction Success Bound Validation

1) Impact of the Problem Sub-Division: In order to verify
the derived theoretical models of the reconstruction success
probability, we performed repeated reconstruction attempts for
various tampering rates for images of size of 1 Mpx, 2 Mpx
and 4 Mpx. Each attempt was initialized with a different
security context κ. The images were pseudo-randomly divided
into separate tasks, and then tampered by damaging a given
number of macro-blocks. For each tampering rate, we counted
successful reconstruction attempts and the number of success-
ful tasks. We present the results for an example configuration
of λ = 2, for which γ̃max = 1

3 (1). The tampering rates were
chosen to cover the range between overall success probability
10−2 and 1 − 10−3, based on the theoretical curves. The
confidence intervals were calculated as Wilson intervals [17]
at 95% confidence level.

Fig. 8a shows the average successful tasks rate. The the-
oretical curves were calculated according to the simplified
model (19), that prooved to be in perfect agreement with the
obtained empirical results. The overall reconstruction success
probability is shown in Fig. 8b. In this case, the simplified
model is accurate only for higher probabilities and higher
numbers of tasks. Hence, we used the full model whenever the
computations were feasible. The impact of model accuracy is
addressed in more detail in Appendix A. Again, the full model
is in perfect agreement with the obtained empirical results.

2) Impact of Recompression: The goal of this experiment
was to confirm the theoretical success bound under image
recompression (11b). A selected image was protected (1 task,
λ = 2) with quality Q1 = 87. Then, the image was randomly
tampered, and recompressed to Q2 = 90. We measured the
number of successful reconstruction attempts for increasing
tampering rates. The experiment was repeated 600 times for
each tampering rate; each time with a different security con-
text. An additional step with recompression only yielded more
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Fig. 7: Impact of recompression on the authentication and watermark extraction performance (λ = 1).
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Fig. 8: Verification of the derived models of the overall success
probability and successful tasks rate.

accurate estimates of the applicable error rates: fp = 0.003,
and pe = 0.104. Hence, from (11) the expected success bound
is γ̃ = 0.308. Fig. 9 shows the measured reconstruction
success rate vs. the tampering rate.

C. Image Quality

The embedding distortion changes with Q1, since the JPEG
quantization table indirectly impacts the embedding strength.
Objective measurement of PSNR with respect to uncom-
pressed PNG images yields values between ≈ 33 dB and
40 dB - increasing as Q1 grows from 85 to 92 and then again
for Q1 ≥ 93 (due to higher embedding strength). Objective
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Fig. 9: Successful reconstruction attempts in the presence of
recompression; 95% confidence intervals.

TABLE IV: Results of objective reconstruction quality assess-
ment for 10,000 natural grayscale images.

PSNR [dB] for λ = SSIM for λ =

1 2 3 4 1 2 3 4

Mean 27.8 30.0 31.7 33.2 0.75 0.83 0.88 0.91
Quantile 0.9 32.4 35.2 36.9 38.0 0.87 0.92 0.94 0.95
Quantile 0.1 23.5 25.4 27.0 28.6 0.62 0.73 0.81 0.86

measurement of the structural similarity index (SSIM) [18]
reveals the same behavior with values from ≈ 0.87 to 0.96.

The reconstruction quality is controlled by the reference rate
λ. Table IV shows the results of objective quality assessment
on 10,000 grayscale natural images converted during protec-
tion to JPEG with quality Q1 = 90. The distortion was mea-
sured using PSNR and SSIM with the original uncompressed
image as a reference. Reconstruction quality reveals minor
variations with Q1, with peak difference of approx. 0.2 dB
for λ = 1 and 0.6 dB for λ = 4.

Fig. 10 shows example images produced by the proposed
scheme. The original Q1 = 90 JPEG is shown in Fig. 10a.
Fig. 10b shows the protected image, processed in the color re-
construction mode, i.e., with both luminance and chrominance
channels watermarked. The PSNR of the protected image is
34.8 dB (SSIM = 0.85). Reconstruction results are shown in
Fig. 10c-f for various reference rates λ.

Fig. 11 shows an example application of the proposed
scheme to recover a removed car from a protected image. The
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Fig. 11: Example application of the proposed scheme; color
protection mode with coarse reconstruction quality.
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Fig. 12: Increase of the JPEG file size due to the proposed
self-embedding scheme.

original image was protected in the color mode with quality
λ = 1 to a Q1 = 90 JPEG. The image was then tampered and
recompressed to Q2 = 92. The decoder successfully detects
the tampering locations (Fig. 11c) for both the tampering (red)
and erasure (blue) maps. The erasure map reveals a greater rate
of damaged macro-blocks than the tampering map.

D. File Size Increase

Embedding the watermark increases the size of the JPEG
files. The increase will negatively correlate with the amount
of texture in the image. In this experiment we measured the
size of the protected JPEGs for Q1 = {85, . . . , 100}, relative
to unprotected JPEGs of the same quality. We tested 500
natural grayscale images. Fig. 12 shows the percentiles of the
obtained distributions. The dotted line corresponds to the 10th
percentile, the solid line to the median, and the dashed line to
the 90th percentile. The observed increase tends to be higher
for lower quality levels, typically reaching 20% for Q1 = 85.

E. Processing Time

The goal of this experiment was to assess the protection time
and confirm the expected impact of the mentioned task size se-
lection strategies. We focused on the protection time due to its
potential implementation on mobile devices. The experiments
were performed with an optimized C++ implementation based

on thread building blocks (TBB). A thread pool matching
the number of cores was used to prevent preemption from
the operating system, and Mersenne Twister was used for
pseudo-random number generation. The following platforms
were used for evaluation (all mobile devices were running
Android Kit Kat - stock firmware for Note 8.0 and Z1 compact
and CyanogenMod for S3):
• desktop PC with a Core 2 Duo E8500 processor (dual

core, 3.16 GHz) running 64-bit Debian Wheezy;
• desktop PC with a Core i7 4771 processor (quad core,

3.50 GHz) running 64-bit Debian Jessie;
• Samsung Galaxy Note 8.0 with a Samsung Exynos 4412

processor (ARM Cortex-A9, quad-core, 1.6 GHz);
• Samsung Galaxy S3 with a Samsung Exynos 4412 pro-

cessor (ARM Cortex-A9, quad core, 1.4 GHz);
• Sony Xperia Z1 compact with Qualcommm Snapdragon

800 processor (Krait 400, quad code, 2.15 GHz).
In the first part of the experiment we measured the time

needed to protect (λ = 2) grayscale images of various sizes.
In order to better illustrate the behavior of computational
complexity, parallel computations were disabled. This part
of the experiment was performed on the E8500-based PC.
Fig. 13a shows the obtained results for a constant number
of tasks. The top curve corresponds to a single task. The
observed polynomial complexity leads to prohibitively long
processing times for high-resolution images. The protection
time of a 16 Mpx image reached 6 minutes. By increasing the
number of tasks, we were able to decrease the time to 22 s
and even to 7 s for 16 and 64 tasks, respectively.

Fig. 13b shows the results for constant task size. Just as
expected, the watermark embedding time changes linearly with
image resolution. Such an approach allows for balancing the
computational complexity and the achievable success bounds.
The use of 1 Mpx tasks delivers reasonable computation
performance with success bound penalty between 1.4% and
3% of the image area (Table V). For 0.5 Mpx tasks, the success
bound penalty varies between 2% and 4.4%, and for 0.25 Mpx
tasks between 3.6% and 6.5%.

Further improvement of the processing performance can be
obtained with parallel task execution. In order to evaluate prac-
tically achievable processing times, the second part of this ex-
periment involves comprehensive evaluation on all considered
platforms. In this experiment we used the color reconstruction
mode and draw uint32 primitives from the Mersenne Twister.
The obtained results are collected in Table V.

Adoption of the proposed two-layer spreading mechanism
allowed to reduce the protection time to the order of seconds,
even on mobile devices. While more demanding configurations
with higher reconstruction quality or bigger tasks still take too
much time, many of them can already be computed efficiently.
For contemporary smartphones input/output (I/O) operations
constitute a major bottleneck, especially for larger images.
Table VI shows an execution profile with the most time
consuming operations for the Z1 compact smartphone. For
the 16 Mpx image I/O operations take over 3 times as long
as encoding. We expect that in a few years, mobile devices
will be capable of efficiently handling the protection process
for all relevant configurations.
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(a) Original (b) Protected, 34.8 dB (0.85) (c) Restored - Coarse, 24.9 dB (0.72)

(d) Restored - Low, 26.9 dB (0.81) (e) Restored - Medium, 28.6 dB (0.86) (f) Restored - High, 30.0 dB (0.89)

Fig. 10: Fragments of the original (a) and the protected image (b) and the corresponding restoration results (c-f) for the
considered reconstruction quality levels in the color operation mode; SSIM scores in parentheses follow PSNR measurements.
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Fig. 13: Image encoding time on a common PC for grayscale
reconstruction mode with disabled parallel computations.

F. Mitigating Partial Reconstruction Attempts

Successful recovery of all tasks is a restrictive requirement,
which significantly reduces the achievable tampering rates.
However, since the images are divided into tasks in a pseudo-
random manner, prospective reconstruction failures are ex-
pected to yield missing blocks scattered over the whole image.
Hence, even incomplete reconstruction might give enough

TABLE VI: Execution time of the most time-consuming steps
of the image protection procedure for a Sony Xperia Z1
compact smartphone; protection (λ = 1) of color images of
various size with a constant task size of 1 Mpx.

Operation Average execution time [s] (4 repetitions)

1 Mpx 2 Mpx 4 Mpx 8 Mpx 16 Mpx

Reading JPEG 0.062 0.071 0.139 0.308 0.749
Gen. of rec. ref. 0.067 0.070 0.113 0.117 0.124
Gen. of RLF code 1 0.010 0.009 0.009 0.010 0.011
Encoding 1 0.357 0.328 0.422 0.473 0.517
Embedding 1 0.120 0.156 0.286 0.256 0.353
Writing JPEG 0.074 0.121 0.279 0.484 0.895
1 - average for all tasks from both luminance and chrominance channels

information about the tampered area. Missing data can be
approximated with a variety of error concealment, inpainting,
or image completion techniques [19].

In this experiment we aimed to demonstrate the impact
of inpainting on the achievable reconstruction fidelity. We
protected a grayscale 4 Mpx image (λ = 2, Nt = 8). Then,
we tampered the image by removing a car with its nearest
surroundings. Finally, we performed content reconstruction
with simulated failures in a given number of tasks. The missing
blocks were concealed with an open-source implementation
(from OpenCV) of a popular inpainting algorithm [20].

Fig. 14 shows corresponding restoration results before and
after inpainting. While small image details cannot be recovered
in this manner, the obtained reconstruction result is still
meaningful, even for half of the tasks finishing with failure.
Hence, for some applications it might be reasonable to define
the tampering rate bound based on the expected successful
tasks rate. Table VII collects the achievable reconstruction
success bounds assuming the acceptable successful tasks rate
is 0.75. By comparing the results with Table V, we can observe
that the gap between the theoretical and achievable success
bounds has shrunk to approximately 1% of the image area,
compared to up to 6.5% for the conventional bound.
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TABLE V: Reconstruction success bounds and encoding time in color protection mode for constant task size. Encoding time
includes the necessary JPEG read and write operations.

Image size [Mpx]

Quality 1 Mpx tasks 0.5 Mpx tasks 0.25 Mpx tasks

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

Tampering rate bound [%] for error probability 10−3

λ = 1 50.01 48.2 47.6 47.3 47.1 47.4 46.6 46.2 45.9 45.6 45.3 44.6 44.2 43.8 43.5
λ = 2 33.31 31.6 31.1 30.8 30.6 30.9 30.2 29.8 29.5 29.3 29.0 28.4 28.0 27.7 27.4
λ = 3 25.01 23.5 23.0 22.7 22.5 22.8 22.2 21.8 21.6 21.4 21.1 20.6 20.2 19.9 19.7
λ = 4 20.01 18.6 18.2 17.9 17.7 18.0 17.4 17.1 16.9 16.7 16.4 15.9 15.6 15.4 15.2

Color image protection time [s] - quad core PC (i7-4771)

λ = 1 0.40 0.45 0.57 0.94 1.65 0.19 0.27 0.41 0.66 1.28 0.13 0.19 0.31 0.54 1.06
λ = 2 0.67 0.73 0.94 1.70 3.28 0.26 0.32 0.58 1.09 1.85 0.17 0.24 0.40 0.71 1.33
λ = 3 0.95 1.01 1.33 2.89 4.51 0.33 0.46 0.77 1.48 2.47 0.20 0.29 0.53 0.91 1.64
λ = 4 1.21 1.30 1.56 3.34 5.83 0.41 0.55 0.89 1.83 2.97 0.23 0.34 0.62 1.04 1.93

Color image protection time [s] - dual core PC (E8500)

λ = 1 0.53 0.63 1.23 2.40 4.79 0.22 0.43 0.83 1.60 3.19 0.18 0.33 0.63 1.21 2.42
λ = 2 0.94 1.05 2.06 4.05 8.09 0.33 0.65 1.27 2.52 4.92 0.24 0.45 0.86 1.66 3.47
λ = 3 1.34 1.46 2.89 5.70 11.40 0.44 0.86 1.69 3.37 6.60 0.30 0.56 1.12 2.16 4.45
λ = 4 1.75 1.88 3.72 7.37 14.74 0.56 1.07 2.11 4.20 8.71 0.35 0.67 1.31 2.66 5.48

Color image protection time [s] - Galaxy Note 8.0

λ = 1 1.57 1.87 3.11 6.09 15.23 0.69 1.01 1.97 3.99 8.03 0.52 0.85 1.70 3.06 6.50
λ = 2 2.78 3.45 7.75 16.09 36.71 1.03 1.59 3.39 8.22 19.00 0.67 1.23 2.31 4.92 12.17
λ = 3 4.12 5.22 12.40 25.45 63.72 1.42 2.70 6.27 13.96 32.49 0.84 1.44 3.43 7.55 19.77
λ = 4 5.48 7.72 17.02 38.81 87.47 1.91 4.12 8.74 20.31 50.76 0.97 2.01 4.73 11.06 28.02

Color image protection time [s] - Galaxy S3

λ = 1 2.24 2.72 4.34 9.07 17.80 0.99 1.56 2.95 5.63 11.35 0.73 1.31 2.56 5.72 10.50
λ = 2 3.97 4.73 9.86 20.41 45.62 1.50 2.31 4.92 10.55 26.38 0.90 1.70 3.44 8.14 17.24
λ = 3 5.77 7.66 15.44 36.42 73.222 2.06 3.54 8.00 16.24 42.35 1.08 2.07 4.55 11.91 25.82
λ = 4 7.72 10.55 22.96 44.28 N/A 2.54 5.63 12.21 25.53 61.61 1.32 2.85 6.21 16.47 36.91

Color image protection time [s] - Xperia Z1 compact

λ = 1 1.13 1.45 2.42 4.86 10.14 0.59 1.11 2.04 4.26 8.18 0.58 1.09 1.99 3.94 7.97
λ = 2 1.93 2.36 3.91 10.38 22.74 0.84 1.60 3.15 6.40 13.64 0.66 1.32 2.75 5.73 11.64
λ = 3 2.63 3.23 5.94 15.40 32.85 1.05 1.85 3.90 8.81 18.80 0.80 1.57 3.30 6.90 16.34
λ = 4 3.60 4.29 8.09 23.91 49.09 1.27 2.47 5.49 12.23 26.79 0.95 1.95 3.87 8.43 21.36
1 - theoretical limit; 2 - occasional out of memory problem; N/A - out of memory problem.

TABLE VII: Success bounds for 1
4 Mpx tasks with success

criterion defined as the expected successful task rate of 0.75.

Quality Image size [Mpx]

1 2 4 8 16

λ = 1 49.0 49.0 48.9 48.9 48.9
λ = 2 32.4 32.4 32.3 32.3 32.3
λ = 3 24.2 24.1 24.1 24.1 24.1
λ = 4 19.2 19.2 19.2 19.2 19.1

VI. APPLICABILITY AND LIMITATIONS

The proposed scheme was tailored to the JPEG file format.
It handles image recompression by considering the most likely
distortions of the embedded watermark that occur when the
image is recompressed to a different quality. However, these
distortions are too big when the new compression level is
higher. This incurs an applicability limit of Q2 ≥ Q1. Similar
limitation applies when the quantization matrix is changed to
a completely different one. While such modifications can be
easily detected with conventional methods, it might make the
proposed scheme unsuitable for some applications.

The proposed scheme aggregates both chrominance chan-
nels into a single communication channel with embedding
capacity matching the luminance component. This is possible
if chrominance sub-sampling is disabled (4:4:4 mode). If it is
enabled during recompression, the scheme will automatically
fallback to use the luminance component only.

VII. CONCLUSIONS

The main goal of our work was to address the issues related
to practical implementation of self-recovery. We extended a
recently proposed model of the content reconstruction prob-
lem to take into account block classification and watermark
extraction errors, inherent to lossy-compressed images. An
important aspect of our study was related to handling high-
resolution color images. We combined two known methods of
spreading the reference information over the image. The ob-
tained mechanism gives better control over the reconstruction
performance and allows to balance its trade-offs. We managed
to significantly reduce the image protection time, with minimal
impact on the achievable success bounds. The protection time
decreased to the order of seconds, even on mobile devices.
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(a) Original image (b) Partial recovery (7/8) (c) Partial recovery (6/8) (d) Partial recovery (4/8)

(e) Full recovery, 30.4 dB (f) Concealed (7/8), 28.7 dB (g) Concealed (6/8), 27.1 dB (h) Concealed (4/8), 24.6 dB

Fig. 14: Concealment of partial recovery artifacts with inpainting for various task failure rates; 4 Mpx image; λ = 2.

TABLE VIII: Comparison of achievable reconstruction performance; experimental results obtained on 10,000 grayscale images
from the BOWS2 data-set (500 for the file size evaluation).

Scheme Embedding
distortion

File size
increase

Reference quality under JPEG Reference quality under random tampering Success conditions
85 90 95 5% 10% 20% 40%

Cheddad [9]1
36.3 dB ≈16% 24.7 dB 25.4 dB 25.5 dB 23.3 dB 21.8 dB 19.5 dB 16.4 dB Lossy compression, low pass
0.90 0.61 0.64 0.65 0.55 0.48 0.39 0.28 filtering, noise, limited tampering

Wang [12] 35.3 dB 6 - 9 % 18.9 dB 21.35 dB 23.5 dB 20.46 dB 19.8 dB 18.5 dB 16.4 dB Lossy JPEG compression,
0.81 0.44 0.52 0.62 0.52 0.51 0.49 0.45 limited tampering

Proposed 33.0 - 39.4 dB 5 - 20% 27.8 dB 27.8 dB 27.8 dB 27.8 dB 27.8 dB 27.8 dB 27.8 dB Recompression to higher quality,
0.87 - 0.96 0.75 0.75 0.75 0.75 0.75 0.75 0.75 tampering up to 50% (grayscale)

1 We changed the embedding method to QIM since it yields better results and gives more control over the embedding distortion

In order to verify the efficiency of the proposed scheme,
we derived an improved theoretical model for calculating the
reconstruction success probability. Based on the performed
exhaustive experimental validation, we can conclude that it
accurately represents the behavior of the adopted reference
information spreading mechanism.

We have shown that it is possible to construct a self-
embedding scheme which trades-off the success bounds in
order to maintain the required reconstruction fidelity. This
constitutes a paradigm shift compared to existing JPEG-
compatible schemes. Table VIII summarizes the performance
of the proposed (λ = 1) and two alternative schemes [9, 12].
The reported results were obtained experimentally on 10,000
grayscale images. While alternative schemes suffer from rapid
quality deterioration with emerging tampering, the proposed
scheme retains constant restoration fidelity. However, it typ-
ically incurs a larger overhead on the file size and does not
allow for any post-processing of the protected images.
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APPENDIX

Due to insufficient accuracy of a previous theoretical model,
in particular for low numbers of tasks, we derived a new model
of the reconstruction success probability. While it is perfectly

accurate, it is computationally infeasible if the number of
tasks is greater than 6. We also derived a simplified model
which can be efficiently computed. It overestimates the success
probability near the theoretical limit for lower task counts, but
always gives accurate values for the expected successful tasks
rate (Fig. 8a). In this section, we aim to quantitatively assess
the accuracy of all of the considered models.

The calculated theoretical curves and their corresponding
empirical verification results for a 2 Mpx image are shown
in Fig. 15. It is clearly visible that for low task count (e.g.,
2 in Fig. 15a) both the legacy and the simplified models are
inaccurate. For higher task counts (e.g., 16 in Fig. 15b) the
results tend to converge to the actual behavior. For a 2 Mpx
image divided into 2 tasks, the mean squared error (MSE)
between the empirical data and theoretical estimates is 9· 10−3

for the legacy model, 5· 10−3 for the simplified model, and
5· 10−5 for the full model. For 16 tasks, the MSE is 21· 10−5

for the legacy model, and 13· 10−5 for the simplified model.

When comparing the tampering rate bounds, the obtained
theoretical estimates are not very different. For small error
rates the models deliver similar results. For instance, for λ = 2
and a 2 Mpx image both the full model and the simplified
models yield a tampering rate bound of 0.316, compared
to 0.309 according to the legacy model. This constitutes
estimation error of approx. 2.2%. For higher number of tasks
this error drops, reaching 1.35% for 4 tasks and 0.89% for 32
tasks. The highest error (3.15%) was observed for the lowest
considered resolution and the lowest task count.
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Fig. 15: Comparison of the accuracy of the considered overall success probability models for 2 and 16 tasks.
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