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Abstract—In this paper we propose a novel scheme for semi-

fragile self-recovery based on iterative filtering of randomly sam-

pled image sections. The scheme exhibits very good robustness

against both malicious tampering and lossy JPEG compression

with only slight deterioration of the reconstruction quality with

attack strength. We describe the operation of the proposed

scheme and present the results of its experimental evaluation. We

also compare our approach with two state-of-the-art alternatives

described in the literature.

Index Terms—content authentication; content reconstruction;

self-embedding; self-recovery; digital watermarking; inpainting

I. INTRODUCTION

Self-recovery, also known as self-embedding, is an active
image protection technique allowing for the reconstruction
of maliciously tampered image content. It exploits an aux-
iliary reconstruction reference, embedded in the image by
means of imperceptible digital watermarking [1]. Based on the
embedded information, the receiving entity is able to verify
the integrity of individual image fragments, and restore an
approximate version of the original content.

The necessity to communicate the original appearance of
the image to a decoder incurs a high requirement towards
embedding capacity. As a result, most of existing schemes
do not tolerate global image processing operations, including
content preserving ones like lossy compression. Such schemes,
referred to as fragile, can deliver accurate tampering identifica-
tion, high reconstruction quality [2–4], and successful recovery
from even extensive modifications [4–6].

However, in many practical applications tolerance for con-
tent preserving operations is of principal importance. Robust-
ness against typical correction operations and compression
methods is a fundamental design objective for semi-fragile
schemes. In contrast to fragile schemes operating with embed-
ding capacity up to 3 bits per pixel (bpp), their semi-fragile
counterparts not only can afford to embed payloads several
dozen times smaller, but also need to deal with prospective
watermark extraction errors.

Reliable authentication and reconstruction requires compact
and robust content representation with considerable amount of
redundancy. Consequently, semi-fragile schemes can recover
only a coarse approximation of the original content. The
reconstruction quality oscillates around 25 dB in terms of
peak signal to noise ratio (PSNR). When the protected image
is subjected to subsequent processing or malicious tampering,
reconstruction artifacts emerge and quickly render the restored
content indiscernible. As a result, most of existing schemes
tolerate only slight compression and small areas affected by
malicious tampering. Specific bounds are usually not reported.

In this paper, we aim to adopt the flexible reconstruction
paradigm, originally proposed for fragile self-recovery [7, 8].
The principal idea behind flexible reconstruction is to pro-
vide high reconstruction quality when malicious tampering is
insignificant, and gradually lower the quality as the tamper-
ing rate increases. Hence, the quality loss results from the
diminishing amount of recovered content details, and not from
reconstruction artifacts.

To this end, we propose a novel semi-fragile self-recovery
scheme based on iterative filtering. The reference information
is constructed by sampling pixels’ intensities along random
sections of the image. The number of sections that can be cor-
rectly extracted from the image will determine the achievable
reconstruction quality. Unknown pixels will be inpainted with
using iterative filtering [9]. We will show that such an approach
successfully achieves reconstruction flexibility with stable
image quality. Based on exhaustive experimental evaluation
on a test set of natural images, we will demonstrate superior
robustness of our scheme against lossy JPEG compression and
malicious tampering. The reconstruction quality remains stable
even when 50% of the image area becomes tampered and the
image is compressed with JPEG of quality 50.

II. RELATED WORK

In this section we introduce four representative approaches
to semi-fragile self-recovery [10–13]. Performance of two
recent schemes is evaluated in detail in Section IV-D.

Lin and Chang directly embed a sub-sampled gray-scale
version of the image heavily compressed with JPEG [10].
The reconstruction is possible if the tampering affects only
a small area, but also in the presence of content preserving
operations, e.g., JPEG compression, Gaussian filtering and
contrast or brightness changes. The authors do not report any
specific operation bounds or any quantitative measurements of
image distortion in the restored areas. The typical embedding
distortion varies between 33 dB and 42 dB depending on the
embedding strength.

Self-recovery can also be modeled as an irregular sampling
problem with restoration by iterative projections onto convex
sets [11]. The reference information is obtained by exclusive
disjunction on cosine transform coefficients’ polarity and
pseudo-random bit sequences. The watermark is embedded by
modulating middle frequency components of the pinned sine
transform. The scheme is robust against JPEG compression,
Gaussian filtering, unsharpening, and contrast changes. The
main limitations are the low reconstruction fidelity, and low
resistance to tampering. With sufficiently small tampered areas
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Fig. 1: Content recovery from randomly chosen sections of pixels’ intensities; unknown values are marked as white.

and absence of global attacks, the reconstruction quality can
reach 27 dB, but typically varies between 12 dB and 24 dB.
The typical embedding distortion is approx. 35 dB.

Another approach is to construct the reconstruction refer-
ence as a traditional binary watermark by half-toning a sub-
sampled grayscale version of the original image [12]. The
reconstruction is performed using inverse half-toning, e.g., by
Gaussian filtering. The watermark is embedded by custom
quantization of the coefficients in the LL1 sub-band of a
discrete wavelet transform (DWT) spectrum. No authentication
mechanism is used and tampering is to be detected by visual
comparison of the restored and the watermarked images.
Emerging watermark extraction errors introduce noise into
the restoration result, which gradually becomes indiscernible.
With error-free extraction of the watermark, the scheme deliv-
ers reconstruction quality around 27 dB. Our implementation
uses quantization index modulation (QIM) [14] for watermark
embedding, which gives better results and allows for better
control over the embedding distortion.

Wang et al. use linear regression to predict first 4 dis-
crete cosine transform (DCT) coefficients of the tampered
blocks from the embedded mean image block intensities [13].
These intensities are embedded in the image by replacing
selected low and medium frequency coefficients in the image’s
spectrum. The reported reconstruction quality reaches approx.
25 dB, but drops very quickly with increasing JPEG com-
pression strength. The scheme is susceptible to reconstruction
dependencies as it simply shifts the reference information
between randomly chosen blocks. Hence, it tolerates only
limited tampering but no specific bound is reported. In order
to mitigate this problem, we supplemented the scheme with
inpainting to complete emerging holes in the restored content.

III. OPERATION OF THE PROPOSED SCHEME

The goal of the proposed scheme is to allow for approximate
reconstruction of the original content of protected digital
images despite malicious tampering and lossy compression.
The scheme involves two entities: an encoder and a decoder.
The encoder is responsible for preparing protected images
prior to their storage or distribution. The decoder is responsible
for image authentication upon its retrieval.

The principal idea behind the proposed approach is to con-
struct the reference information by sampling pixels’ intensities
along randomly chosen lines on the image plane. We refer
to these intensity profiles as reference sections. The decoder
extracts as many valid sections as possible, restores the pixels
along their lines and approximates unknown pixels with the

use of inpainting. Example recovery results from 100 and
200 reference sections are shown in Fig. 1. The more valid
sections, the higher the reconstruction quality.

A. Operation of the Encoder

Operation of the encoder is shown in Fig. 2. The input
image is divided into non-overlapping macro-blocks, and the
following steps are repeated for each of them.

1) Draw line coordinates: The first step is to draw four
line coordinates (x1, y1, x2, y2) from a uniform distribution
spanning the dimensions of the image. The coordinates are
regarded as side-information shared by the encoder and the de-
coder. In practical implementation, a pseudo-random number
generator is initialized by a shared secret key  to guarantee
proper synchronization.

2) Sample intensities: The next step is to sample pixels’
intensities along the chosen line and transform the sampled
signal using 1-dimensional DCT. In this study, we use a
constant number of 1000 samples per section.

3) Generate section descriptor: The next step is to generate
a compact representation of the reference section by retaining
a small number of DCT coefficients. The number and the
precision of included coefficients is chosen automatically to
minimize the distortion within a given budget of available
payload bits. The DC coefficient is represented with a uniform
6-bit code-book and the AC coefficients with a family of
optimal Lloyd-Max code-books [15] with precision of 4-6 bits
per coefficient. The precisions for individual coefficients are
determined by solving the following optimization problem:

min ✓(v), (1a)
s.t. 8

i2{2,...,1000} 4  v

i

 6, (1b)
8
i2{2,...,1000} v

i

2 Z, (1c)
v1 = 6, (1d)

X

i2{1,...,1000}

v

i

= b. (1e)

where b is the total number of bits, v is a coefficient
precision vector, and ✓(v) is the corresponding distortion of
the coefficients. In this study, we used the expected L2 distance
between the quantized and the original spectrum coefficients
based on a training set of 8,000 sections. Successive im-
provements of the distortion for individual coefficients are
monotonically decreasing with their precision. As a result, the
optimization problem in (1) can be efficiently solved with a
simple algorithm given below.
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Fig. 2: Operation of the considered encoder: I - input image,  - secret key, I⇤ - protected image.

The procedure starts with the following initial vector v(0):
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In each step k, the algorithm improves the precision for a sin-
gle coefficient whose promotion maximizes the improvement
of the objective function (per single allocated bit):
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The algorithm terminates when
P1000

i=1 v

i

= b. Coefficients
whose promotion would exceed b, either directly in the current
step or indirectly in the following ones, are not considered.

4) Sign Section Descriptor: The final step of section de-
scriptor preparation is to append a short signature for valida-
tion by the decoder. Due to negligible impact of prospective
errors on certain positions, the signature is calculated only
from the most important bits (MSB) of the coefficients; we
consider 4 MSBs for 6-bit coefficients and 3 MSBs for lower
precisions. The secret key  and macro-block index are also
included in the signature. We use 8-bit signatures obtained by
shortening MD5 hashes.

5) Shuffle & Embed: The final step is to embed the obtained
watermark. The embedding is performed on selected coeffi-
cients {x

i

} of a block-wise calculated 2-dimensional DCT
spectrum. The block size for DCT calculation is chosen to
match JPEG, i.e., 8⇥8 px. The coefficients are modified using
quantization index modulation:

x

⇤
i

= sign(x
i

)·�·Q
mi

�
|x

i

| ·��1
�

(4)

where x

i

is the original spectrum coefficient, x⇤
i

is the water-
marked coefficient, � is the quantization step. The sign(x) =
x|x|�1 function returns the sign of the coefficient, and Q

mi(· )
is a quantizer for message bit m

i

, i.e., Q0(x) = 2· bx

2 + 0.5c
and Q1(x) = 2· bx

2 c+ 1.
The descriptor is scrambled prior to embedding. The most

important bits and the least important bits are shuffled sepa-
rately, so that the most important bits would be embedded in
lower frequencies characterized by better robustness against
incidental distortion.

B. Operation of the Decoder

Operation of the decoder is shown in Fig. 2. The following
steps are used to recover the coarse version of the original
content. Steps 2 - 6 are repeated for all macro-blocks; the
remaining ones are performed only once.

1) Recover the Quantization Step: The first step is to
estimate the quantization step � used by the encoder. We use
a linear search in a range of feasible values to find the one
maximizing the number of correctly extractable sections.

2) Extract the watermark: The next step is to extract the
embedded watermark using:

m

i

= b0.5 + |x⇤
i

| ·��1c mod 2 (5)

where x

⇤
i

denotes the watermarked coefficient, and m

i

a
single bit of the watermark. The extracted payload is then
descrambled to obtain valid sections’ descriptors.

3) Draw line coordinates: In order to maintain synchro-
nization with the coordinates chosen by the encoder, the
decoder draws (x1, y1, x2, y2) from a pseudo-random number
generator initialized by the secret key .

4) Validate signature: In the next step the decoder re-
calculates the signatures of the extracted section descriptors
and compares them with their extracted counterparts. If the
signatures do not match, the current section is discarded.

5) Reconstruct and validate sections’ spectra: Validated
section descriptors are parsed and their spectrum coefficients
are read from the corresponding code-books. Due to limited
length of the embedded signatures, occasional false negative
errors are to be expected as a result of signature verification.
In order to improve the classification accuracy, the decoder
analyzes the spectra of the previously accepted sections. A
support vector machine (SVM) is used to distinguish between
valid and anomalous sections. In this study, we used a linear
kernel to train a classifier on four features extracted from the
sections’ spectra: the variance of the coefficients’ magnitudes,
parameters of a linear regression fit to the AC coefficients, and
the maximum deviation of the AC coefficients from the linear
fit. The penalty for false positive errors was 10-fold the penalty
for false negative errors. The training was performed on a set
of 30 representative natural images (Section IV). We verified
the accuracy using 4-fold cross validation, and obtained the
average true positive rate of 99.96% and the average true
negative rate of 91.72%.

6) Inverse 1-D DCT: In the final step of reference sec-
tion descriptors’ extraction, the decoder performs inverse 1-
dimensional DCT to recover their spatial representation.

7) Fuse reference sections: Once the reference sections are
validated, the next step is to restore known pixels. Since the
lines are likely to overlap, a single pixel can be estimated
from multiple values originating from different sections. While
many strategies could be adopted to fuse candidate values, it
is important to consider shorter sections with greater weights,
due to their relatively better representation accuracy. In our
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Î

Repeat for all macro-blocks



Fig. 3: Operation of the considered decoder: I - input image,  - secret key, ˆ
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experiments, we observed no visible differences between
choosing the best candidate (from the shortest section) and
weighting the candidates inversely proportional to their sec-
tions’ lengths. The presented results were obtained with the
former strategy.

8) Interpolate borders: Randomly chosen lines will rarely
provide enough information about the content on the borders
which leads to irregular black frame around the image. In order
to mitigate this issue, the content of the borders is predicted
from the closest known pixels. On each border 64 pixels are
estimated this way; the remaining ones are estimated using
B-Spline interpolation.

9) Inpaint unknown pixels: The last step is to predict the
values of the unknown pixels with the use of inpainting. We
use a simple and fast approximation algorithm for iterative
filtering [9] inspired by the push and pull approach [16]. The
algorithm performs iterative down-sampling and up-sampling
using a local kernel at multiple resolutions. In this study we
used 5 decomposition levels and a 2-D Gaussian-like kernel
kTk with k = [0.05 0.25 0.40 0.25 0.05].

IV. EXPERIMENTAL EVALUATION AND ANALYSIS

The behavior of the proposed scheme can be controlled
with a number of parameters. The reconstruction quality is
controlled by the number of reference sections and by the
precision of their representation. The embedding distortion and
robustness are controlled by the quantization step � and the
selection channel. In the performed experiments, we use the
coefficients 7-14 in the zig-zag order from each 8⇥8 px block
which results in a fixed embedding capacity of 0.125 bpp.
Hence, each macro-block carries a 128-bit descriptor of a
reference section, including a 8-bit signature.

Due to insufficient image resolution in commonly used test
sets, we chose 100 photographs with diverse content spanning
various brightness levels and the number of details. The images
(grayscale 1 Mpx) can be obtained at [17].

A. Embedding Distortion Assessment

In this experiment we change the quantization step � and
measure the PSNR between the original and the protected im-
ages. The measurement is performed for � starting from 0.035

up to 0.085 with a 0.005 step. Each test image is evaluated
10 times, with different security keys . The obtained results
are shown in Fig. 4. The plot shows the average distortion for
each quantization step along with prediction intervals for new
observations with 95% confidence.

Fig. 5 shows an example fragment of a protected image
for increasing embedding strength. The watermark is visible
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Fig. 4: Embedding distortion for various embedding strengths;
error bars represent prediction intervals with 95% confidence.
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Fig. 6: Average reconstruction quality for various numbers
and precision of reference sections; the dashed line shows the
embedding capacity constraint for 1 Mpx images.

as a noise-like pattern uniformly distributed over the entire
image. The noise is well masked in textured areas, but becomes
perceptible in low-texture areas. This limitation could be
addressed by modulating the embedding strength accordingly;
the issue is, however, out of scope of this study.

B. Reconstruction Quality Assessment

Let c denote the number of reference sections, and b the
precision of their descriptors. Fig. 6 shows a surface fitted
to the average reconstruction quality (3 repetitions for 100
images) for various configurations of (b, c). The fit was ob-
tained using locally weighted smoothing quadratic regression
(R2

= 0.995). Embedding capacity constraint for 1 Mpx
images is shown with a dashed curve. The optimal parameters
correspond to a conditional maximum on the curve. We
numerically obtained (b = 174, c = 753) which gives the
PSNR of 25.7 dB.

The obtained results clearly show that it is pointless to
increase the precision b until a sufficient number of sections



(a) Original image (b) � = 0.035, PSNR = 42.7 dB (c) � = 0.045, PSNR = 40.5 dB (d) � = 0.065, PSNR = 37.2 dB

Fig. 5: Example fragments of a protected image for increasing embedding strength.

can be used for reconstruction. The choice also needs to take
into account that both malicious tampering and incidental pro-
cessing will reduce the number of useful sections. Considering
this, we chose the precision of b = 120 bits, which gives the
expected PSNR only 0.3 dB worse than the optimum. For
higher-resolution images other values might be preferred.

The reconstruction quality is expected to fluctuate based
on the selection of reference sections on the image plane.
For the selected configuration of b = 120 bits, we performed
30,000 repetitions (300 seeds for 100 images) of the protection
process. 99% of the obtained PSNR scores line within a
±0.38 dB range around the mean value for individual images.
Greater improvement can be expected by carefully designing
a strategy for optimal selection of the reference sections. With
proper control over the distribution of drawn lines’ lengths, we
managed to obtain visibly better representation of finer image
details. However, the issue is out of scope of this study.

C. Impact of Malicious Tampering

The number of reference sections available for reconstruc-
tion is be proportional to the number of authentic image
blocks. Sections extracted from tampered image blocks will
ideally be removed during descriptor validation. The goal
of this experiment is to assess the effective false negative
classification rate. For this purpose, we perform watermark
extraction and reconstruction attempts for unwatermarked im-
ages compressed with JPEG of various quality levels. The
obtained effective false negative rate is 3.799 ± 0.66 · 10�5

95% confidence (Wilson confidence interval). Signature veri-
fication alone leads to false positive rate of 3.9· 10�3, which
means that adoption of SVM classifier reduced the error rate
approximately 100-fold.

D. Comparison with Existing Schemes

In this experiment we compared the performance of the
proposed scheme with two state-of-the-art alternatives: the
scheme by Cheddad et al. [12] based on inverse halftoning of
a binary reference image, and the scheme by Wang et al. [13]
based on prediction of low-frequency DCT coefficients from
the embedded mean block intensities.

Our comparison focused on the reconstruction quality and
robustness. We performed a full protection ! tampering ! re-
construction cycle for various combinations of compression
levels and tampering rates; each configuration was repeated 10
times for different security keys for each of the 100 images.
The tampering was implemented as content replacement with
unwatermarked image data in randomly chosen image blocks.
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Fig. 7: Average reconstruction quality for tampered and com-
pressed images; embedding strengths 40.1 dB and 36.4 dB.

We considered four embedding strengths, corresponding to
average embedding distortion of 42.5 dB, 40.1 dB, 38.5 dB and
36.4 dB. We controlled the embedding strength by adjusting
normalization factors of the mean pixel values [13] and by
adjusting the quantization step for the remaining schemes.

Fig. 7 shows the average quality of the restored images. The
best quality (PSNR of 26.3 dB) was observed for the scheme
by Cheddad et al. [12]. However, it quickly deteriorates with
increasing tampering and compression rates. The scheme by
Wang et al. [13] reveals similar behavior yet with higher
susceptibility to lossy compression. Despite worse represen-
tation of fine image details, the proposed scheme delivers
superior robustness against both malicious tampering and
JPEG compression. The obtained PSNR scores remain stable
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Fig. 8: Comparison of restored images in presence of both compression and tampering; embedding strength 36 dB; from left:
proposed scheme, Cheddad’s scheme [12], Wang’s scheme [13]; for clarity, only top half of the image is shown.

for a very wide range of attack strengths. The observed quality
deterioration for lower embedding strength and increasing
compression rates stems from a rapid decline of watermark
extraction performance for some of the test images.

Fig. 8 shows example reconstruction results for a grid of
various tampering and compression rates. The figures allow to
see gradual degradation of the reconstruction fidelity. White
artifacts in the scheme by Wang et al. [13] stem from over-
flowing mean block intensities, most frequent in dark image
fragments and for low embedding strengths. The illustrated
example corresponds to the embedding PSNR of 36.4 dB. A
complete set of results, including wider ranges of the grid and
all test images is available as supplementary materials [17].

V. CONCLUSIONS

While the adopted approach is not well suited for the
reconstruction of fine image details, it exhibits remarkable
resiliency against both malicious tampering and lossy com-
pression. We verified that the reconstruction quality remains
nearly unaffected even when 50% of the image area becomes
tampered, and the image is compressed to a JPEG of quality 50
(Fig. 7). We believe our scheme provides an interesting alter-
native, especially for applications where coarse reconstruction
is sufficient or high robustness is required.
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